Tracking Proterozoic Oxygenation

NOAH J. PLANAVSKY¹, DEVON B. $COLE^1$, ERIC J. BELLEFROID¹

¹Department of Geology and Geophysics, Yale University, New Haven, CT, 06511, USA; noah.planavsky@yale.edu

Surface oxygen levels in the mid-Proterozoic have been heavily debated over the past few years. Traditionally, mid-Proterozoic atmospheric pO_2 levels have been only broadly constrained to be ~1-40% PAL, and often assumed to be around 10% PAL. We present several geochemical records, and a process-based conceptual framework, that suggest background oxygen levels were below 1% of the present atmospheric level (PAL) during the billon years leading up to the rise of animals. Lower estimates for mid-Proterozoic pO₂ are traditionally derived from measurement of the extent of Fe³⁺ retention in Proterozoic paleosols. However, the only definitive, well-preserved mid-Proterozoic paleosols are actually characterized by iron loss rather than iron retention, relative to the pre-weathering composition of the parent material. In this light, mid-Proterozoic paleosols should be viewed as providing a maximum rather than a minimum constraint on pO_2 of ~1% PAL. Sedimentary Cr isotope records support the rather sparse paleosol record and similarly suggest that there was incomplete iron oxidation in terrestrial environments through most of the mid-Proterozoic. However, the Cr isotope record could be consistent with ephemeral swings to higher pO_2 levels for some intervals in the Proterozoic, which should not be surprising-dramatic swings in surface oxygen levels should be expected at lower background atmospheric oxygen conditions, even with feedbacks stabilizing the Earth system in a low-oxygen state. In addition, a new carbonate REE dataset coupled to a Ce oxidation model provides independent evidence for surface oxygen levels less than 1% PAL as a background mid-Proterozoic state. Evidence for low background oxygen levels through much of the Proterozoic bolsters the case that environmental conditions have been a critical factor in controlling the structure of ecosystems through Earth's history.