Carbon isotope fractionation in the 3HP/4HB pathway

ANN PEARSON^{1*}, ELISE B. WILKES¹, SARAH J. HURLEY², FELIX J. ELLING¹

¹ Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA (*pearson@eps.harvard.edu)

²Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA

The 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) pathway is utilized by Thaumarchaeota and by thermophilic Crenarchaeota of the order Sulfolobales. Unlike all other autotrophic carbon metabolisms, this pathway exclusively uses HCO3⁻, rather than CO2, as the substrate for carbon fixation. Accordingly, biomass produced by the 3HB/4HP pathway is ¹³C-enriched relative to biomass fixed by pathways containing enzymes specific for CO₂ (e.g., Rubisco), with total biosynthetic isotope effects (ε_{bio}) of *ca*. 2‰ in Crenarchaeota [1] and ca. 19‰ in Thaumarchaeota [2]. Suggested explanations for the large difference in ε values between the two groups usually invoke the dual effects of thermophily and growth at $pH \leq 3$ (low [HCO₃⁻]) for the Crenarchaeota vs. mesophily and growth at $pH \ge 7.5$ (high [HCO₃⁻]) for the Thaumarchaeota. Here we examine the taxa Metallosphaera sedula and Nitrosopumilus maritimus using isotope flux-balance models to argue that the primary cause of different ε values more likely is the presence of carbonic anhydrase in M. sedula and its corresponding absence in N. maritimus. The pool of HCO₃⁻ in N. maritimus is predicted to be out of isotopic equilibrium with CO₂, and the value of ε_{bio} implies that little if any HCO3⁻ is assimilated directly from the extracellular environment. Marine Thaumarchaeota appear to be dependent on passive CO₂ uptake and a slow rate of intracellular conversion to HCO3-, implying that Ebio should be sensitive to growth rate and CO_2 availability (μ/CO_2). This behavior is analogous to eukaryotic algae, but is predicted to occur in the opposite direction: ε_{bio} becomes smaller as $[CO_2(aq)]$ increases. Although the μ/CO_2 response is predicted to be a small effect on ε_{bio} , such an idea represents a testable hypothesis for the marine Thaumarchaeota, both in the laboratory and in natural systems.

van der Meer et al. (2001) *FEMS Microb. Lett.* 196:67-70.
Könneke et al. (2012) *Org. Geochem.* 48:21-24.