Distribution and Estimation of Short Term Deposition Rate of Atmospheric ¹⁰Be in Sambhar Lake, Rajasthan, India

JITENDRA K PATTANAIK*1, SHAIL V. EKKA², PREM CHAND KISKU¹, PANKAJ KUMAR³

¹Central University of Punjab, Bathinda 151001, India
²IHS, CES, NCU, Zhongli city, 32001, Taiwan (ESS, RCEC, Academia Sinica 115, Taiwan)
³Inter University Accelerator Centre, New Delhi – 110067, India; *¹jitendra.bapi@gmail.com,

Atmospheric ¹⁰Be used as tracer to find out sedimentation rate, paleoclimatic variation, past solar activities. ¹⁰Be is highly particle reactive, it binds to the aerosols and is subsequently deposited in natural archives as wet and dry deposits; and it can be present in different phases such as exchangeable, organic, carbonate and residual of lake sediments.

Here an attempt has been made to understand the ¹⁰Be distribution in the different phases of sediments of Sambhar lake (a hypersaline lake), Rajasthan, India. For this study, surface sediment samples were collected using 5cm PVC pipe from different parts of the Lake and were further sub-sampled at 1cm interval. ¹⁰Be concentration in the water soluble phase of the sediments is 9±6% and varying between 0.27 ± 0.08 to $1.29\pm0.29\times10^{7}$ atoms/g. This percentage is positively correlated with the percentage of evaporite mineral present in the sediments in the acid soluble phase, it varies from 5.73 ± 0.93 to $16.60\pm1.92\times10^7$ atoms/g. Present day ¹⁰Be deposition rate is 8.7x10⁶ to 1.54×10^7 atoms/ cm²/a. In the sediments 30-60% of ¹⁰Be is derived from primary and recycled component and 70-40 % from Dry deposit (dust input). In the wet deposits 20% of ¹⁰Be is primary and 80% is recycled component.