Copper sequestration in mofettes – how geogenic carbon dioxide affects binding to organic matter and mineral precipitation

Judith Mehlhorn1, Johannes Bösdö1, Juan S. Lezama Pacheco2, Jon Petter Gustafsson3, Ruben Kretzschmar4, Britta Planer-Friedrich1*

1 Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research, Bayreuth University, Bayreuth, Germany (*b.planer-friedrich@uni-bayreuth.de)
2 Department of Environmental Earth System Science, Stanford University, Stanford, CA, United States
3 Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
4 Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland

Increased soil CO₂ contents can significantly alter soil conditions [1] and the mobility of metal(loid)s [2]. Mofettes (natural CO₂ degassing sites) represent excellent sites to study CO₂ influence with conditions changing from permanently anoxic in the degassing centers to non-CO₂-influenced, oxic soils within only some meters distance.

We investigated the influence of CO₂-induced changes in soil conditions on the mobility of metal(loid)s by determining the spatial distribution of several trace elements over a mofette site. Especially Cu showed a complex behavior with lowest soil contents in zones of moderate CO₂ influence and strong accumulation in degassing centers. Cu sorption isotherms determined in experiments with natural organic matter (NOM)-rich topsoil from a transect over a mofette and X-ray absorption spectroscopy analyses of natural and Cu-spiked soil samples revealed two main processes of Cu sequestration: At low to moderate CO₂, Cu(II) was mainly adsorbed to NOM, with Cu mobility increasing towards the mofette center due to an increase in the dissolved to solid ratio of NOM. However, at >90% CO₂ in soil air, reduction and precipitation as Cu sulfide minerals again limited Cu mobility and led to accumulation in the solid phase.

Representative for other soils influenced by anoxic gasses, our results show exemplary that increased Cu mobility due to high dissolved NOM concentrations can become problematic, e.g. at contaminated sites, while Cu mineral precipitation might negatively influence plants and microbes due to limited bioavailability of this essential trace element.