Accurately measuring H₂O in volcanic glasses: Application of a new FTIR spectroscopy method

I.M. MCINTOSH¹*, A.R.L. NICHOLS², K. TANI³ AND E.W. LLEWELLIN⁴

¹JAMSTEC, Yokosuka, Japan 237-0061 (*correspondence: i.m.mcintosh@jamstec.go.jp)

²University of Canterbury, Christchurch 8140, NZ

³Kahaku, Tsukuba, Japan 305-0005

⁴Durham University, Durham DH1 3LE, UK

Dissolved magmatic water content changes throughout magma ascent, eruption and emplacement, and snapshots of this evolution are preserved in the dissolved water contents of volcanic glasses, which include both melt inclusions in crystals and matrix glasses in pyroclasts, dome rocks and lavas. These glasses record not only the total dissolved water content (H_2O_t), but also the water speciation, i.e. the amount of water dissolved as molecular water (H_2O_m) versus hydroxyl groups (OH). These H_2O speciation data can reveal the pressure-temperature histories of volcanic products, and are obtained using Fourier transform infrared spectroscopy (FTIR). We present here a new FTIR method that improves the accuracy, hence interpretation, of these data, and highlight its potential for reconstructing the original H_2O_t contents of hydrated glasses.

Mid-IR FTIR analyses of volcanic glasses must use the 3500 cm⁻¹ H₂O_t and 1630 cm⁻¹ H₂O_m peaks, with OH concentration found indirectly as OH = H₂O_t – H₂O_m. However, large errors in H₂O_t and OH concentrations can occur due to the use of a fixed 3500 cm⁻¹ H₂O_t molar absorptivity coefficient (ϵ 3500), when ϵ 3500 in fact varies with H₂O speciation. Our new method is a modification of the Beer-Lambert law (which converts absorbance into concentration) that accounts for the species-dependence of ϵ 3500. This method requires no special equipment or procedure, and can also be used to reprocess existing data.

We demonstrate the improved accuracy of H_2O data obtained using this method, and present applications including H_2O diffusion profiles, melt inclusions, and hydrated glasses. FTIR (unlike other techniques that measure only H_2O_t) can identify hydrated glasses by their elevated H_2O_m contents, since low temperature hydration adds the diffusive species H_2O_m without altering OH. This 'disequilibrium' speciation makes the species-dependent ϵ 3500 method critical for hydrated glasses. Moreover, by combining accurate OH contents of such glasses with existing models of H_2O speciation, we show that it is possible to reconstruct their original, pre-hydration H_2O_t contents.