Topotactic Motif and Orientation Relation Extraction for Phase Transformations from In-Situ X-ray Powder Diffraction

SCOTT J MCCORMACK¹ AND WALTRAUD M KRIVEN^{*2}

¹Materials Science and Engineering, University of Illinois at Urbana Champaign, IL, USA. <u>smccorm2@illinois.edu</u>
²Materials Science and Engineering, University of Illinois at

Urbana Champaign, IL, USA. kriven@illinois.edu

In- situ high temperature synchrotron, X-ray powder diffraction was used to extract the topotactic Motif and orientation relationship between orthrohombic $Hf_6Ta_2O_{17}$ (Ima2, S.G. 46) and tetragonal HfO_2 (P4₂/nmc, S.G. 137) peritectic reaction at ~2250 °C

$\mathrm{Hf_6Ta_2O_{17}} \xrightarrow{} \mathrm{HfO_2} + \mathrm{L}$

The topotactic relationship for the peritectic reaction was established by examining Bragg peaks which were continuous throughout the peritectic transformation. These Bragg peaks described a face-centered, Z=4, pseudo-cell, cation Motif that was present in both the parent (tetragonal HfO₂) and the product (orthorhombic Hf₆Ta₂O₁₇) phases. A topotactic orientation relation matrix was determined from continuous, Bragg peaks common to the parent and product phases. The continuous Bragg peaks defined by using reciprocal vectors in terms of the parent (HfO₂) structure were minimized in strain when compared with the product (Hf₆Ta₂O₁₇) structure. These constitute the reciprocal lattice basis vectors from which the orientation relationship can be extracted so as to align the Hf₆Ta₂O₁₇ crystal with the HfO₂ crystal.

Cubic HfO₂ (Fm3m, S.G 225) was identified as an aristotype cell for the orthorhombic Hf₆Ta₂O₁₇ to tetragonal HfO₂ peritectic transformation as it is the undistorted Motif (i.e. a face-centered, Z=4, cubic-cell). From the aristotype cell, symmetry decomposition was performed by means of program ISODISTORT applied to the peritectic transformation. The symmetry decomposition revealed that the mechanism of the peritectic transformation was due to polyhedral rotations and changes in cation-oxygen coordination (polyhedra) due to change in chemical composition and strain relaxation.