U-Pb badelleyite ages by SF-LA-ICP-MS

TONETTO, E. M.¹, MATHEUS, G. F.¹, SANTOS, T. J. S.¹, NAVARRO, M. S.¹

¹ Geosciences Institute (GI), University of Campinas — UNICAMP,

P.O. box 6152, 13083-970 Campinas, SP, Brazil (etonetto@g.unicamp.br)

Given SiO_2 undersaturated conditions of baddeleyite (ZrO_2) crystalization, it has been considered a key geochronometer for crystalization and emplacement of rocks formed under this condition (*e.g.* mafic-ultramafic). Here we report the implementation of the SF-LA-ICP-MS routine for U-Pb age determination in baddeleyite at the Isotopic Geology Laboratory-GI-UNICAMP.

The separation processes of baddelevite is labourious and time-consuming comprising crushing, milling and density separation under water-shaking table, that we adapt from [1]. After that, the baddeleyite grains were handpicked under binocular microscope, mounted in epoxi resyn and carefully polished to a flat surface; CL images were taken under SEM/Gatan Chroma CL detector. In order to achieve the ages, we measured masses ²⁰²Hg, ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th, ²³⁵U and ²³⁸U using the LA system Photon Machines Excite .193 coupled to a SF-ICP-MS Element XR. Laser frequency was set up at 10 Hz, fluence of 9.45 J.cm⁻² and two spot sizes (25 and 35 μ m) were tested. The ablation time was 60 s (20s-local gas blank). Iolite 2.5 (DRS Vizualage) was used to data reduction offline. Kovdor [2] and Phalaborwa [3] baddelevites were used as primary and secondary reference materials, respectively.

The tested spot sizes, revealed that the second is more effective recovering the Pb isotopes. Considering the uncertainties, our 206 Pb/ 238 U mean weighted age of 375 ± 5 Ma for Kovdor [2] match the ages of the literature. On the other hand, Phalaborwa [3] yielded a slightly younger 206 Pb/ 238 U mean weighted age 1957 ± 56 Ma that we attribute either to inhomogeneity or to the calibration.

In order to apply the routine, we studied four samples of alkaline rocks from southeastern Brazil, Cananéia syenite (TJCNN-9) and Jacupiranga carbonatite (TJJAC-M2, TJJAC-M4 and TJJACP-1B), which yielded $^{206}Pb/^{238}U$ mean weighted age between 74 ± 5 Ma and 120±3 Ma. These are more robust ages compared to previous Rb/Sr and Ar/Ar, permiting more consistence to the timing of southeast Brazilian alkaline magmatism [4, 5]. Nevertheless, to enlarge the knowledge of the rocks of this region more samples are being prepared for baddeleyite geochronology.

 Söderlund & Johansson,(2002). Geochem. Geophys. Geosys., 3 (2), 1-7. [2] Rodionov et al., (2012). Gond. Reser.
728-744. [3] Xie et al. (2008). Chin. Sci. Bull. 53, 1565-1573. [4]. [4] Spinelli, (2007). PhD thesis. [5] Roden et al. (1985) The J. of Geol., 93 (2), 212-220. This abstract is too long to be accepted for publication. Please revise it so that it fits into the column on one page.