Effect of concentration-dilution cycle on the variation in δ^{37} Cl values in evaporites

Chong-Guang LUO 1 , han-jie wen $^{1, 2*}$, lin 2 , ving-kai xiao 3 , mao-yong he 4

- ¹State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China. Email: wenhanjie@vip.gyig.ac.cn
- ²University of Chinese Academy of Sciences, Beijing 100049, China
- ³Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- ⁴State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China

The chlorine isotopic ratios have been thought to be having a good correlation with the salt lake concentration-dilution cycle, which was supported by many natural evaporites sequences. However, the degree to which the dilution process will affect δ^{37} Cl is also not known clearly. Here concentration-dilution experiments of brine have been conducted. We present chlorine isotope data of salt and brine that reflect the cycle of brine evolution process. From the results we find a close relationship between the evaporation degree and the $\delta^{37}Cl$ value: during intervals of concentration process the δ^{37} Cl of brine is decreasing from 0.09‰ to -0.84\% with evaporation degree falling to 0.25 from 1. reflecting ³⁷Cl have been enriched in salts; during intervals of concentration the $\delta^{37}Cl$ is rising from -0.84‰ to -0.26‰ with evaporation degree ranging from 0.25 to 0.42, reflecting more ³⁷Cl transferring into the brine from the salts. It is indicated that the extent of variation in δ^{37} Cl of this two processes is different. The same variation in volume of dilution process will have larger effect on δ^{37} Cl than that of concentration process. These data confirm that ^{37}Cl released from salts can push the brine $\delta^{37}\text{Cl}$ rising, and demonstrate that δ^{37} Cl is a good proxy to trace salts precipitated stage in concentration-dilution cycle.