Atomic-scale imaging of mixed-layer compounds from the aleksite group

W.Y. LIU^{1,2,*}, C.L. CIOBANU¹, N.J. COOK¹, A. SLATTERY¹, C.J. STANLEY³

¹ The University of Adelaide, SA 5005, Australia (*correspondence: wenyuan.liu@ adelaide.edu.au; cristiana.ciobanu @adelaide.edu.au; nigel.cook@ adelaide.edu.au; ashley.slattery@adelaide.edu.au)

² College of Zijin Mining, Fuzhou University, 350116 Fuzhou, China (15146@163.com)

³ Natural History Museum, London U.K. (orebodies@hotmail.com)

Bi-Pb-chalcogenides of the aleksite group, Pb_nBi₄Te₄S_{n+2} [1] represent a homologous modular series. Named minerals (aleksite, PbBi₂Te₂S₂, and saddlebackite, Pb₂Bi₂Te₂S₃) are thus considered as unit cell based on regular stacking of 7and 9-atom modules: (Bi2Te2S·PbS) and (Bi2Te2S·2PbS), respectively. The phases can also be defined as mixed-layer compounds with 1-dimensional interface modulated structures expressed by the general formula: $M_{p+\epsilon}X_{p+1}$ (M=Pb, Bi; X= Te, S, Se; p>2; $\varepsilon < 1$) [2]. Phases with $\varepsilon = 0$, including aleksite, consist of a single type of layer, whereas phases with $\varepsilon \neq 0$ can be predicted as combinations of shorter and longer layers S(M_pX_{p+1}). L(M_{p+1}X_{p+2}); S, L=number of layers). An example is M₅X₇ (M_{2.14}X₃, 2<p<3) expressed as [57] repeats known as 'Phase C', PbBi₄Te₄S₃ [1]. HAADF-STEM imaging of FIB-prepared foils offers: (i) direct visualisation of these structures; and (ii) assessment of stacking disorder at the lattice scale that can produce nonstoichiometric compositions at the scale of the microprobe beam. HAADF-STEM images of Phase C (Clogau Mine, UK) show irregular layer stacking 5-, 7-, 9-, 11- and 13-atom layers (Fig. 1). TEM-STEM mapping of the sequence shows Pb and S present only within wider layers whereas the 5-atom layers are Bi- and Te-only. This suggests observed stacking disorder is related to an overprint of earlier Bi-Te assemblages.

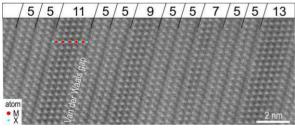


Figure 1. HAADF-STEM image of unnamed PbBi₄Te₄S₃.
Image at 200kV (Titan Themis; Adelaide Microscopy).
[1] Cook, N.J. et al. (2007) Can. Mineral. 45, 417-435. [2]
Ciobanu, C.L. et al. (2009) Am. Mineral. 94, 517–534.