Surface energy of fayalite and its effect on Fe-Si-O oxygen buffers and the olivine-spinel transition

K. Lilova¹, M. DeAngelis², L.M. Anovitz³, A. Navrotsky¹

¹Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California 95616; <u>kililova@ucdavis.edu</u>, anavrotsky@ucdavis.edu

²University of Arkansas at Little Rock, Earth Sciences; <u>mtdeangelis@ualr.edu</u>

³Geochemistry and Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, TN 3783; <u>anovitzlm@ornl.gov</u>

The surface energy (hydrated surfaces) of favalite Fe₂SiO₄ was determined to be 2.47 ± 0.25 J/m² using high temperature oxide melt solution calorimetry. This is larger than the surface energy of Fe₃O₄ spinel, but lower than that of forsterite Mg₂SiO₄. The changes in the positions of the quartz/fayalite/magnetite (QFM) and guartz/iron/fayalite (QIF) buffers with particle size reduction were calculated. QFM is lowered in fO₂ by 3-7 log units as a function of temperature for 30 nm particles while QIF is raised by 1-2 log units. The estimated surface energy difference between olivine and spinel polymorphs decreases the pressure of the olivine-spinel transition in Fe₂SiO₄ by about 1 GPa.