Identification of decamethyl henicosane-products from c1' $\mathbf{\prime}$-3-2' condensation of isoprenoids

J. LIAO ${ }^{1 *}$, H. LU ${ }^{1}$, Q.T. WANG ${ }^{1}$

${ }^{1} 511$ Kehua Street, Tianhe District, Guangzhou 510640, China. (*correspondence: liaojing09@163.com)

Introduction

The first identification of the HBI alkanes in the Maoming oil shale ${ }^{[1]}$ was actually based on a comparison with the mass spectrum of C_{20} Highly branched isoprenoids (HBI) ${ }^{[2]}$ from Rozel Point crude oil. However, the structural speculation seemed unsolid and thus under suspicious because not only their mass spectrum but also their cochromatography results were both not identical to the later synthesized $\mathrm{C}_{30} \mathrm{HBI}$ standard compound ${ }^{[3]}$. In addition, the source attribution of diatoms indicated by C_{30} HBIs was inconsistent with the sample. Thus, we purified the same HBI alkanes and structurally characterized them by MS and NMR.

Results and discussion

Two novel stereisomers decamethyl henicosanes $\left(\mathrm{C}_{31} \mathrm{H}_{64}\right)$ (DMHs) (Fig. 1a, 1b) could be yielded by NMR and MS results, which completely different from that of previously speculated C_{30}-HBIs (Fig. 1c). A c1' $2-3-2^{\prime}$ condensation ${ }^{[4]}$ (cyclobutane ring) of two FPPs (farnesol diphosphates) and a subsequent fission of the $\mathrm{c}^{\prime}-2^{\prime}$ bonds, followed by methylation and geochemical hydrogenation is proposed to explain the geochemical presence of the novel polymethylhenicosanes in oil shale (Fig. 2).

c) $\mathrm{C}_{30}-\mathrm{HBI}$ (Brassell et al. 1986)
b) DMH-2

Figure 1: Comparison of novel DMHs and $\mathrm{C}_{30} \mathrm{HBI}$

Figure 2: Possible precursors and pathway for the DMHs.
[1] Brassell et al. (1986) Org. Geochem 10, 927-941. [2] Yon et al. (1982) Tetrahedron Lett. 23, 2143-2146. [3] Rowland \& Robson (1990) Mar. Environ. Res 30, 191-216. [4] Thulasiram et al. (2007) science 316, 73-76.

