Identification of decamethyl henicosane-products from c1'-2-3-2' condensation of isoprenoids

J. LIAO^{1*}, H. LU¹, Q.T. WANG¹

¹511 Kehua Street, Tianhe District, Guangzhou 510640, China. (*correspondence: liaojing09@163.com)

Introduction

The first identification of the HBI alkanes in the Maoming oil shale^[1] was actually based on a comparison with the mass spectrum of C_{20} Highly branched isoprenoids $(HBI)^{[2]}$ from Rozel Point crude oil. However, the structural speculation seemed unsolid and thus under suspicious because not only their mass spectrum but also their co-chromatography results were both not identical to the later synthesized C_{30} HBI standard compound^[3]. In addition, the source attribution of diatoms indicated by C_{30} HBIs was inconsistent with the sample. Thus, we purified the same HBI alkanes and structurally characterized them by MS and NMR. **Results and discussion**

Two novel stereisomers decamethyl henicosanes ($C_{31}H_{64}$) (DMHs) (Fig. 1a, 1b) could be yielded by NMR and MS results, which completely different from that of previously speculated C_{30} -HBIs (Fig. 1c). A c1'-2-3-2' condensation^[4] (cyclobutane ring) of two FPPs (farnesol diphosphates) and a subsequent fission of the c1'-2' bonds, followed by methylation and geochemical hydrogenation is proposed to explain the geochemical presence of the novel polymethylhenicosanes in oil shale (Fig. 2).

Figure 1: Comparison of novel DMHs and C₃₀ HBI

Figure 2: Possible precursors and pathway for the DMHs.

 Brassell et al. (1986) Org. Geochem 10, 927-941. [2] Yon et al. (1982) Tetrahedron Lett. 23, 2143-2146. [3] Rowland & Robson (1990) Mar. Environ. Res 30, 191-216. [4] Thulasiram et al. (2007) science 316, 73-76.