Interplay of physical and biological processes in the Southern Ocean and deglacial CO₂ variations

Tao Li¹,²*, Laura F. Robinson¹, Tianyu Chen²,³, Xingchen T. Wang³, Andrea Burke⁵, Albertine Pegrum-Haram⁶, James William Buchanan Rae⁶, Ana Samperiz⁷, Peter T. Spooner⁷, George Rowland⁸, Hong Chin Ng¹, Maria Prokopenko⁹, John Souton⁹, Timothy Knowles¹⁰, Gaojun Li¹, Daniel M. Sigman¹¹

¹Bristol Isotope Group, School of Earth Sciences, University of Bristol, Bristol, UK
²MOE Key Laboratory of Surficial Geochemistry, School of Earth Sciences, Nanjing University, Nanjing, China
³State Key Laboratory for Mineral Deposits Research, School of Earth Sciences, Nanjing University, Nanjing, China
⁴Division of Geological and Planetary Sciences, California Institute of Technology, California, USA
⁵School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
⁶School of Earth Science and Engineering, Imperial College London, London, UK
⁷Department of Geography, University College London, London, UK
⁸Department of Geology, Pomona College, California, USA
⁹School of Physical Sciences, University of California, Irvine, CA, USA
¹⁰Organic Geochemistry Unit, Bristol Radiocarbon Accelerator Mass Spectrometry Facility, School of Chemistry, University of Bristol, Bristol, UK
¹¹Department of Geosciences, Princeton University, Princeton, USA

*Correspondence to Tao Li (tl16688@bristol.ac.uk)

The mechanisms that account for the increase of atmospheric carbon dioxide (CO₂) during the last deglacial (~18 thousand to 11 thousand years ago) are still debated, with ice core evidence suggesting distinct phases of gradual, millennial scale increases and hiatuses, interspersed by three rapid, centennial scale jumps. It has long been thought that the Southern Ocean plays an important role because of its both physical and biological effects on the global carbon cycle. However, high-resolution Southern Ocean marine paleoclimate records with age control sufficient to test the relevant hypotheses are still challenging to produce, holding back a comprehensive understanding of the relative importance of different processes. Here, we present new high-resolution deglacial records of radiocarbon and nitrogen isotopes recovered from uranium-thorium-dated solitary deep-sea corals from the Drake Passage. The unprecedented spatial and temporal resolution of these records enables us to capture the variations of the ventilation state of different water depths in the Southern Ocean and link them to the surface biological activity during the last deglaciation. These results suggest that physical and biological processes in the Southern Ocean were highly coupled during the last deglaciation. Most remarkably, we find that the centennial CO₂ rises at 14.8 and 11.7 thousand years ago were associated with major ventilation of the deep/intermediate ocean coupled with reduced efficiency of surface nitrate consumption, consistent with rapid release of oceanic carbon to the atmosphere. Combined, our results provide compelling evidence for connection between physical and biological processes in the Southern Ocean and atmospheric CO₂ variations during the last deglaciation, allowing a more nuanced understanding of the interaction between ocean circulation, biological activity, and the global carbon cycle.