Eu isotope variation in Eu standard materials and geological materials

SEUNG-GU LEE^{1*}, TSUYOSHI TANAKA²

¹KIGAM, Daejeon 34132, Korea, sgl@kigam.re.kr
²Nagoya University, Nagoya 464-8601, Japan, tanakat@nagoya-u.jp

Europium (Eu) is one of the rare earth elements and the shape of Eu abundance normalized by a chondrite is one of the geochemical proxies to understand an evolutin history of the terrestrial and planetary materials. Eu has two stable isotopes (151 Eu and 153 Eu). Generally, it is known that two isotopes do not show isotopic variation within ε unit [1,2]. However, recent research results indicate a possibility of slight isotopic variation in Eu isotopes [3,4].

In this work, we measured Eu isotopic ratios precisely from the commercial Eu standard solutions and some reference rock materials. For the standard material, we used a commercial pure Eu solution of NIST3117a. The measurement of Eu isotopes was performed Neptune Plus II MC-ICP-MS at Korea Institute of Geoscience and Mineral Resources. Mass discrimination effect on two europium isotopes was externally corrected by the Sm isotopic composition added to the Eu samples (150 Sm/ 154 Sm = 0.3244, average value of [5] and [6]) on an exponential law. In our long tests based on the precise measurement and Eu separation technique, we could observe a slight isotopic variation of Eu isotopic ratios in the various Eu standard solutions (0.02%) to 0.06%) as well as references rock materials (-0.67‰ to 0.06‰). This variation indicates a possibility of fractionation processes of europium isotopes in the geological system.

[1] Chang et al. (1994) Int. J. Mass Spectro. Ion Proc. 139, 95-102. [2] Moynier et al. (2006) GCA 70, 4287-4294. [3] Tanaka et al. (2009) Goldschmidt Conf. A1310. [4] Li et a. (2016) Goldschmidt Conf. A1759. [5]Mass and McCulloch (1990) Chem.Geol. 88, 301-315. [6] Hidaka et al. (1995) Anal. Chem. 67, 1437-1441.