SWI Flux of CH₄ in the Gunsan Basin of the South-Eastern Yellow Sea, Off the Coast of Western Korea

Jun-Ho LEE^{1*}, Kap-Sik JEONG¹, Han Jun WOO¹

¹Korean Seas Geosystem Research Center, Korea Institute of Ocean Science & Technology, Busan, 49111, Republic of Korea (*correspondence: leejh@kiost.ac.kr)

Fick's First Law of SWI and Methods

The sediment–water interface (SWI) flux of methane (CH₄) was investigated using Fick's first law of diffusion in box cores from eight stations in the Gunsan Basin, the south-eastern part of the Yellow Sea, in 2015 [1].

The dissolved CH₄ concentrations in the samples were measured using a gas chromatograph–semiconductor detector (EG Analyzer, model GS-23; Sensortec, Inc., Shiga, Japan) by injecting an aliquot of headspace gas [2].

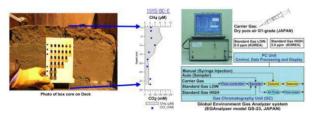


Figure 1: Procedure for SWI flux to analysis of sediments CH₄ concentrations using EG Analyzer.

Discussion of Results

The CH₄ flux of the SWI in the Gunsan Basin ranges from 0.002 to 0.029 (average 0.012) $\text{mM} \cdot \text{m}^{-2} \cdot \text{day}^{-1}$. The average CH₄ emission flux over the total area of the Gunsan Basin (60,000 km² [3]) is 11.8 ton·year⁻¹. This value is lower compared with those in other parts of the world. The range of CH₄ flux is higher than the 0.007–0.01 mM·m⁻²·day⁻¹ observed in Tomales Bay, New York, USA, but much lower than those in intertidal zones, estuaries, and lakes [4]. To clearly predict the SWI flux of CH₄, budget or modelling is recommended, together with more measurements of CH₄ emission rates during field monitoring approaches in the Gunsan Basin of the South-Eastern Yellow Sea are required.

[1] Martin et al. (2005) J. Control Release **102**, 123-133. [2] Lee et al. (2018) J. Environ. Sci. Heal. A. **53**, 457-466. [3] Wang et al. (2014) Geology of the China Seas **6**, 392-393. [4] Sansone et al. (1998) Estuaries **21**, 66-77.