Age dating clinopyroxene phenocrysts with the ⁴⁰Ar/³⁹Ar method: preliminary results and future prospects

KEVIN KONRAD^{1*}, ANTHONY A.P. KOPPERS¹, ANDREA BALBAS², DANIEL MIGGINS¹, DANIEL HEATON¹

¹College of Earth, Ocean & Atmospheric Science, Oregon State University. Corvallis, OR, USA

²Divison of Geological & Planetary Sciences, California Institute of Technology. Pasadena, CA, USA *Konradke@oregonstate.edu

The ability to date altered submarine basaltic lava flows is often hindered by a lack of K-bearing phenocrystic phases or suitable holocrystalline groundmass. Clinopyroxene (cpx) is a common phenocrystic phase in alkaline basalts and is highly resistive to low-temperature seawater and hydrothermal alteration. Preliminary experiments show that phenocrystic cpx separated from basalt are a viable phase for ⁴⁰Ar/³⁹Ar age determinations. Nine cpx incremental heating experiments have been undertaken, five of which from samples with dated coeval phases. The cpx ages range from 11.5 to 112 Ma with uncertainties ranging from 0.65 to 8.8% (25; median of 1.3%). The ages are concordant or fall within 6% of their coeval phase. Age plateaus range from 50-95% of the total ³⁹Ar released for individual step heating experiments. The cpx contain relatively elevated K/Ca of 0.01-0.5 for the low to moderate temperature steps, which forms those age plateaus, inferring that some other K-bearing phase hosted within the cpx is degassing. The current best fit for the K-bearing phase are secondary melt inclusions, trapped along re-annealed grain boundary defects. Preliminary Arrhenius diffusion experiments indicate that cpx phenocrysts can display both single and polydomain diffusion patterns during relative low temperature heating (<1200°C). Clinopyroxene dating by the ⁴⁰Ar/³⁹Ar method has the potential to provide a wealth of information for previously undated, altered seafloor lithologies.