Origin of the CO₂ fluxes of the Icelandic Hotspot

RÍKEY KJARTANSDÓTTIR¹*, ANDRI STEFÁNSSON¹, Árný E. Sveinbjörnsdóttir¹, Jens Fiebig², Jan Heinemeier³, Sæmundur Ari Halldórsson¹

 ¹Institute of Earth Sciences, University of Iceland, Reykjavík, Iceland. (*corresponding author: <u>rikey@hi.is</u>)
²Institute of Geosciences, Goethe-University Frankfurt, Germany
³AMS¹⁴C Dating Laboratory, Institute of Physics and Astronomy, University of Aarhus, Denmark

Carbon dioxide plays a major role in climate change and warming of the Earth's atmosphere. In order to assess past and predict future climate perspectives, it is vital to assess all sources of CO₂ contributing to the global fluxes. The deep Earth's CO₂ fluxes have been evaluated based on degassing of volcanic complexes and geothermal systems. However, passive degassing of CO₂ through tectonically active areas has not been included into such models, such degassing potentially contributing significantly to the Earth's CO₂ fluxes.

The sources of CO₂ degassing of active and off-rift systems in Iceland were studied using carbon isotope systematics of gases and groundwaters. The range of CO₂ concentrations, δ^{13} C-CO₂ and ¹⁴C-CO₂ was large, ~5-75·10⁴ ppm, -27.4 to +2.0‰ and 0.6 to 118 pMC, respectively. Sources of CO₂ were evaluated by comparing the measured chemical and isotope composition with those simulated using isotope geochemical models. Three major sources of CO₂ were identified: (1) dissolution of partially degassed basaltic rocks formed at the surface or shallow depths, (2) atmospheric CO₂ through airwater exchange at surface, and (3) input of gas at depth with similar carbon and isotope composition as the pre-erupted melt of the upper mantle and lower crust beneath Iceland.

The CO₂ flux of the Icelandic crust was estimated to be ~5- $10 \cdot 10^{10}$ mol/yr. Similar fluxes of 7-23 $\cdot 10^{10}$ mol/yr have been obtained using CO₂/³He values and ³He flux estimates [1]. Passive degassing through tectonically active zones off-axis account for as high as ~50% of the total flux with significant proportion of the CO₂ originating from the mantle. The CO₂ partial pressures within active volcanic and geothermal systems correspond to ~0.5-10 bar with a flux of ~500- $3000 \cdot 10^5$ mol CO₂/km²/yr, Off-axis, the CO₂ partial pressures of mantle origin were estimated to be ~10⁻⁶ bar, with an average flux of <5 $\cdot 10^5$ mol/km²/yr but as high as 125-1600 \cdot 10⁵ mol/km²/yr for the most tectonically active ones.

The results indicate that diffusive CO₂ fluxes of deep origin in tectonically active areas outside active volcanic regions may be a significant contribute to the Earth's CO₂ degassing

[1] Barry et al. (2014) Geochim. Cosmochim. Acta 134, 74– 99.