Silica-undersaturated High Pressure Granulite From the Central Maine Terrane, CT, USA

D.S. KELLER^{1*} AND J.J. AGUE¹

¹Yale University Dept. of Geology & Geophysics, New Haven, CT, 06511 USA *(correspondence: duncan.keller@yale.edu)

The Acadian-Neoacadian Brimfield Schist in the Central Maine Terrane (CMT) of Connecticut, USA, contains silica-saturated UHT rocks¹ as well as a silicaundersaturated garnet-spinel-corundum gneiss². The silica-undersaturated gneiss is a high-pressure granulite with minimum equilibration conditions of ~1.8 GPa and ~1040 °C, estimated using pseudosection modeling and ternary feldspar reintegration thermometry of metamorphic antiperthites in leucosomes. Pseudosections were constructed using Theriak/Domino ver. 4.02 with the Holland and Powell (2011) dataset³ and the thermodynamic data file of D.K. Tinkham (ver. 02). Biotite TiO₂ content can exceed 6.5 wt%, yielding a Ti-in-biotite T estimate of ~1100°C at 1.8 GPa, consistent with the feldspar temperature estimate⁴. The P-T estimate is also consistent with experimental results on melt inclusions from silica-saturated rocks elsewhere in the CMT⁵. The near-eclogite facies P-T conditions necessitate metamorphic depths of 60-70 km, placing the rock at the root of the orogenic belt. Leucosomes are two feldspar \pm biotite syenites; they provide compelling evidence that silica-undersaturated lithologies produce syenitic melts at high-pressure granulite conditions. Density calculations show that the garnet-spinel-corundum gneiss is dense enough to delaminate from the lower crust if feldspathic melt is extracted.

¹Ague et al. (2013) Geology ²Keller & Ague (2016)
GSA Abstracts with Programs ³Holland & Powell
(2011) J Met. Geology ⁴Wu & Chen (2015) Sci. Bull.
⁵Ferrero et al. (2017) EGU Geophys. Research Abs