Venus: The Making of an Unihabitable World

Stephen R. Kane¹, Giada Arney², David Crisp³, Shawn Domagal-Goldman², Lori S. Glaze², Colin Goldblatt⁴, David Grinspoon⁵, James W. Head⁶, Adrian Lenardic⁷, Cayman Unterborn⁸, Michael J. Way⁹

¹University of California, Riverside, CA, 92521
²NASA GSFC
³JPL, Pasadena, CA
⁴University of Victoria, Canada
⁵Planetary Science Institute, Tucson, AZ
⁶Brown University, Providence, RI
⁷Rice University
⁸Arizona State University
⁹NASA GISS

A fundamental aspect of understanding the limits of habitable environments and detectable signatures is the study of where the boundaries of such environments can occur, and the conditions under which a planet is rendered into a hostile environment. The archetype of such a planet is Earth's sister planet, Venus, and provides a unique opportunity to explore the processes that created a completely uninhabitable world and thus define the conditions that can rule out biorelated signatures. In this talk I will describe the gaps in our knowledge regarding Venus and how this is impacting our ability to model exoplanet atmospheres and interiors. I will outline the premise behind the "Venus Zone" and how testing the conditions of runaway greenhouse is an essential component of understanding the development of habitable conditions. I will present several detected potential Venus analogs including climate simulations that constraint their surface environments. Finally, I will summarize the need for a return mission to Venus and the primary questions that need to be addressed.