## Evaluation of S<sup>0</sup> as a biosignature in laboratory and field experiments

BRANDI KAMERMANS<sup>1\*</sup>, JULIE COSMIDIS<sup>1</sup>, JENNIFER MACALADY<sup>1</sup>, ALEXIS TEMPLETON<sup>2</sup>

<sup>1</sup> The Pennsylvania State University, Department of Geosciences (\*correspondence: <u>bzk80@psu.edu</u>, jxc1158@psu.edu, jlm80@psu.edu)

2 University of Colorado at Boulder, Department of Geological Sciences (alexis.tempteon@colorado.edu)

Elemental sulfur  $(S^0)$  in the environment is frequently interpreted as having been produced by S-cycling bacteria. Several crystalline phases ( $\alpha$ -S<sub>8</sub>,  $\beta$ -S<sub>8</sub>, and  $\gamma$ -S<sub>8</sub> allotropes) of S<sup>0</sup> exist in nature. It was recently discovered that micrometric S<sup>0</sup> spheres encapsulated with carbon can be produced in the absence of any microbial activity through the reaction of dissolved organic compounds with sulfide, a process called organomineralization [1]. Organomineralized S<sup>0</sup> commonly exists as the metastable allotropes  $\beta$ -S<sub>8</sub>, and  $\gamma$ -S<sub>8</sub>, which are never present in biomineralized S<sup>0</sup>. STXM analyses of samples collected from the Frasassi cave system (Italy) reveal S<sup>0</sup> encapsulated within organic matrices outside of microbial cells. S<sup>0</sup> is present as  $\beta$ -S<sub>8</sub> based on XRD. XRD and TEM however show that intracellular S<sup>0</sup> inclusions in the Soxidizing bacterium Thiothrix are composed of amorphous or microcrystalline S<sup>0</sup> (Figure 1).

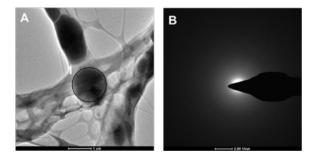



Figure 1: (a) TEM image shows S globules within filaments of *Thiothrix*. Circle depicts where SAED was collected; (b) SAED reveals that the S is amorophous or microcrystalline.

Our results suggest that  $S^0$  crystal structure and close association with extracellular carbon, may serve as signatures to discriminate organomineralization from biomineralization processes in the environment.

## REFERENCES

[1] Cosmidis, J. and A.S. Templeton (2016) Nature Communications, 7.