Upper limit on H₂ levels in the Archean atmosphere based on detrital magnetite

SHINTARO KADOYA, DAVID C. CATLING

Box 351310, Dept. of Earth & Space Sciences, University of Washington, Seattle, WA, 98195, USA

The partial pressure of hydrogen on the early Earth is important because it has been proposed that high pH_2 warmed the planet [1, 2] or allowed prebiotic chemistry in the early atmosphere [3]. However, such hypotheses lack observational constraints. Here, we estimate an upper limit on pH_2 using a kinetic model of magnetite conversion given that detrital magnetite is found in Archean riverbeds (e.g., [4]).

A magnetite particle is converted and disappears on a timescale that depends on pH_2 and pH. Assuming a pH derived from reasonable estimates of the pCO_2 range in the Archean, the survival time is ~100 kyr when pH_2 is 10^{-2} bar, and decreases as pH_2 increases.

The residence time of a particle in long river systems is 100 kyr [5], so the observation of detrital magnetite particles in Archean river beds at ~3.0 Ga [4] likely indicates that pH_2 was below 10^{-2} bar. The uncertainty in kinetic rates favors a decrease in the timescale, so our value of pH_2 is a robust upper limit of pH_2 in the Archean atmosphere. This upper limit for pH_2 is consistent with that imposed on pH_2 by Archean ecosystems that include methanogens (e.g., [6]). However, the limit precludes both H₂ as a significant greenhouse effect via collision-induced absorption and a strongly reducing atmosphere at ~3.0 Ga.

References

- [1] Sagan (1977), Nat. 269, 224-226.
- [2] Wordsworth & Pierrehumbert (2013) Sci. 339, 64-67.
- [3] Miller & Urey (1953), Sci. 117, 528-529.
- [4] Donaldson & de Kump (1998), Sediment. Geol. 1-4, 153-176.
- [5] Johnson et al. (2014), GSA Bull. 126, 813-830.
- [6] Kharecha et al. (2005), Geobiol. 3, 53-76.