New Developments at the Laboratory for Radiokrypton and Radioargon Dating at USTC

W. JIANG^{1,2}, G.M. YANG^{1,2,3}, F. RITTERBUSCH^{1,2}, Y. Q. CHU^{1,2}, X.Z. DONG^{1,2,3}, J.Q. GU^{1,2}, S.M. HU^{1,2,3}, A. LANDAIS⁴, V. LIPENKOV⁵, Z.T. LU^{1,2,3}, B. STENNI⁶, TALDICE TEAM⁷, A.M. TONG^{1,2}.

¹University of Science and Technology of China, Hefei, China

²Center for Excellence in Quantum Information and Quantum Physics, CAS, Hefei, China

³Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, China

⁴IPSL/LSCE, CNRS/CEA/UVSQ/Université Paris Saclay, 91190 Gif sur Yvette, France

⁵Arctic and Antarctic Research Institute, St Petersburg, Russia

⁶Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy ⁷www.taldice.org

The Atom Trap Trace Analysis (ATTA) method has allowed routine analysis of the long-lived noble-gas radioisotope ⁸¹Kr, ⁸⁵Kr, and ³⁹Ar, which are ideal tracers for environmental water and ice samples. Together with ¹⁴C, they cover an age range from a few to 1.3 million years. In this talk we will report the latest developments on radiokrypton and radioargon dating in our laboratory at the University of Science and Technology of China (USTC). In particular we'll show the recent works about radiokrypton dating with ice cores (~6kg) from Antarctica. Some technical advances will also be discussed including small sample handling, automated sample preparation methods as well as the current status for the ³⁹Ar-dating apparatus under development.

Website: http://atta.ustc.edu.cn