Density measurements on Li₂CO₃-Na₂CO₃-K₂CO₃-Rb₂CO₃-Cs₂CO₃-CaCO₃-SrCO₃-BaCO₃ liquids: systematic trends with composition

S.HURT^{1*}, R.A. LANGE¹

¹University of Michigan, Ann Arbor, MI, 48109 (*correspondance: @umich.edu)

The densities of 15 liquids in the Li₂CO₃-Na₂CO₃-K2CO3-Rb2CO3-Cs2CO3-CaCO3-SrCO3-BaCO3 system were measured at 1 bar with the Pt double-bob method between 758 and 1455 K. They were combined with similar measurements from the literature on 9 liquids in the Li₂CO₃-Na₂CO₃-K₂CO₃-CaCO₃ system and used to calibrate a new linear volume equation. The results of the regression lead to partial molar volumes ($\pm 1\sigma$ cm³/mol) at 1100 K for Li₂CO₃ (41.22 \pm 0.09), Na₂CO₃ (53.27 ± 0.11) , K₂CO₃ (71.59 ± 0.13) , Rb₂CO₃ (80.78 ± 0.13) 0.11), Cs_2CO_3 (94.00 ± 0.09), $CaCO_3$ (40.18 ± 0.16), $SrCO_3$ (44.33 ± 0.22) and $BaCO_3$ (50.99 ± 0.19). At 1100 K, the thermal expansion coefficients of all alkali carbonate liquid components are indistinguishable within 1-sigma error $(22.07 \pm 1.66 \times 10^{-5} \text{ K}^{-1})$, but differ from the thermal expansion coefficients of all alkaline-earth carbonate liquid components, which are also indistinguishable within 1-sigma error (16.40 \pm $2.85 \times 10^{-5} \text{ K}^{-1}$). The linear volume equation recovers the measurements within analytical error (± 0.3 %). The partial molar volumes of all eight carbonate components increase linearly along two different trends, one for the alkali carbonates (R²=0.999) and another for the alkaline earth carbonates ($R^2=0.999$) as a function of cation volumes, where cation-oxygen coordination numbers are obtained from molecular dynamic simulations in the literature (ranging from 4- to 6-fold among the alkali metals and 7- to 8-fold among the alkaline-earth metals). The linear fits lead to two different partial molar volumes (~38 and ~31 cm³/mole) for the carbonate ion (CO_3^{2-}) at 1100 K, depending on its coordination (4-fold and 6-fold, respectively), with the respective cations. The results permit the partial molar volume of MgCO₃ and FeCO₃ liquid to be estimated. If Mg²⁺ and Fe²⁺ are in 6-fold coordination with both oxygen and carbonate, the estimated partial molar volumes at 1100 K are 34.4 (\pm 0.1), and 35.1 (\pm 0.1) cm³/mol, respectively, with a thermal expansion of $16.40 (\pm 2.85) 10^{-5} \text{ K}^{-1}$