Potassium Isotopic Inputs to Subduction Zones

YAN HU^{1*}, FANG-ZHEN TENG¹, TERRY PLANK²

¹ University of Washington, Seattle, WA 98195, USA (*correspondence: yanhu@uw.edu)

² Columbia University, Lamont Doherty Earth Observatory, Palisades, NY 10964, USA

Seafloor subduction transports crustal materials and volatiles to the mantle, imparting a continental signature, including K enrichment, to arc volcanic rocks. Potassium isotopes are a potential tracer of this recycling process due to the high solubility of K in high-T aqueous solutions and enrichment of K in slab-hosted hydrous phases compared to mantle minerals. Recent advances in analytical capabilities permit detection of sub-per mil (‰) differences in δ^{41} K values [(41 K/ 39 K_{sample} – 41 K/ 39 K_{standard})/ 41 K/ 39 K_{standard} × 1000] between some arc lavas and ultrapotassic rocks and the overall homogeneous Bulk Silicate Earth (BSE) [1, 2]. Constraining the variability of K isotope ratios in subducting crust and sediment provides a basis for assessing the role of recycled lithologies in arc genesis and global K cycling.

We measured high-precision δ^{41} K values for representative subducting sediments and altered oceanic crust drilled from several active subduction systems to evaluate the range and mechanism of K isotopic variation. The sediment samples were derived mainly from circum-Pacific margins and have different lithological types, ages, and depositional depths. These samples were measured previously for Mg isotopes [3]. The altered oceanic crust samples were drilled at ODP Site 801 in the oldest known oceanic crust (ca. 170 Ma) of the Pacific in front of the Mariana trench; they have undergone prolonged low-temperature alteration. We document a large variation of δ^{41} K in both subducting sediments (~ 0.8%) and altered oceanic crust (~ 0.5%) with values both higher and lower than the BSE ($\delta^{41}K \sim -0.5\%$). The the lower δ^{41} K values may reflect an inherited terrestrial weathering signature and/or in-situ clay formation, whereas the higher δ^{41} K values could be linked to uptake of isotopically heavy seawater K (δ^{41} K ~ 0.1‰). Our findings suggest that both chemical weathering and alteration of oceanic crust lead to significant K isotope fractionation. Subduction of these isotopically heterogeneous crustal lithologies may be a cause of isotopically distinct volcanic rocks.

[1] Parendo et al. (2017) AGU abs. V13E-07.

[2] Morgan et al. (2018) J. Anal. At. Spectrom. 33, 175-186.

[3] Hu et al. (2017) Chem. Geol. 466, 15-31.