Two distinct chondrule generations in Acfer 094 based on ²⁶Al-ages and oxygen isotope ratios

A. T. HERTWIG¹*, M. KIMURA², T. USHIKUBO³, C. DEFOUILLOY¹, N. T. KITA¹

¹WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA (hertwig@wisc.edu)

²NIPR, Antarctic Meteorite Research Center, Midoricho 10-3, Tachikawa, Tokyo 190-8518

³Kochi Institute for Core Sample Research, JAMSTEC, 200 Monobe-otsu, Nankoku, Kochi 783-8502, Japan

Models of chondrule formation in the protoplanetary disk suggest a short formation interval for chondrules within a single chondrite group [1,2]. Indistinguishable $({}^{26}\text{Al}/{}^{27}\text{Al})_0$ values were found among most type-I (FeO-poor) chondrules in Acfer 094 (ungrouped C3.00) [3], corresponding to ${}^{26}\text{Al}$ -ages of ~2.3 Ma after CAI (hereafter: initial ${}^{26}\text{Al}/{}^{27}\text{Al}$ of 5.2×10^{-5} , [4]). However, one chondrule is significantly older (1.8 ±0.2 Ma). There is no obvious correlation between ages and oxygen isotope ratios ($\Delta^{17}\text{O} = \delta^{17}\text{O} - 0.52 \times \delta^{18}\text{O}$) [3].

We obtained ²⁶Al-²⁶Mg measurements of 7 type-II (FeOrich) chondrules in Acfer 094 using a Cameca IMS 1280 that is equipped with a RF Plasma ion source [5,6]. We used O_2^{-1} primary ions and analyzed plagioclase (4-5 µm spot size, 50 pA) and olivine/pyroxene (~7 µm, 1 nA) by using multicollection electron multipliers [5] and Faraday cups [3], respectively. Six type-II chondrules have indistinguishable ²⁶Al-ages ranging from 2.3 +0.2/-0.2 to 2.7 +0.3/-0.2 Ma after CAI that also overlap with 9 out of 10 type-I chondrule data from [3]. This narrow age range agrees with our current understanding of chondrule formation and material mixing in the disk [1,2]. One type-II chondrule (G85) is older (1.8 ± 0.2 Ma) than other type-II chondrules, but the age is similar to that of the oldest type-I chondrule fragment (G39) in Acfer 094 by [3]. Both have Δ^{17} O values of ~0‰ and show δ^{18} O and $\delta^{17}O$ values comparable to those of chondrules in ordinary chondrites. This suggests either (i) both chondrules formed in different disk regions with distinct oxygen isotope signatures followed by chondrule migration; or (ii) assuming no migration of chondrules, the oxygen isotope reservoir of the chondrule-forming region was variable with time.

Cuzzi J. N. et al. (2010) Icarus 208, 518-538. [2]
Alexander, C. M. O.'D. et al. (2012) MaPS 47, 1157–1175.
Ushikubo T. et al. (2013) GCA 109, 280-295. [4]
Jacobsen B. et al. (2008) EPSL 272, 353-364. [5] Kita N. T. et al. (2018) LPS XLIX, #2441. [6] Hertwig A. T. et al. (2018) LPS XLIX, #2061.