New views on CaCO₃-H₂O oxygen isotope fractionation

L.S. DEVRIENDT¹*, J.M. WATKINS², H.V. MCGREGOR¹

¹ School of Earth and Environmental Sciences, University of Wollongong, NSW 2522 Australia

² Department of Geological Sciences, University of Oregon, Eugene, OR, United States

*correspondence: ld404@uowmail.edu.au

The processes controlling the CaCO₃-H₂O oxygen isotope fractionation factor ($\alpha_{c/w}$) for biogenic and inorganic carbonates are not fully understood, potentially compromising paleoenvironmental reconstructions based on the carbonate oxygen isotope ratio (${}^{18}O/{}^{16}O$). A major advance in understanding ${}^{18}O/{}^{16}O$ in carbonates has been to view carbonate-water fractionation as the result of kinetic and/or equilibrium fractionation steps occurring between water and dissolved inorganic carbon (DIC) species and between the DIC species and carbonate [1]. However, the intermediate fractionation steps have not been fully quantified.

This study presents a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO₃ and H₂O that accounts for fractionation between both CaCO₃ and the CO₃²⁻ pool, and CO₃²⁻ and H₂O, as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase [2].

The model shows that: (a) The fractionation between CaCO₃ and CO₃²⁻ is controlled by the solution calcite saturation state and salinity, (b) pH and mineral growth rate effects on $\alpha_{c/w}$ observed in nature and in laboratories are likely to originate from disequilibrium fractionation (i.e. kinetic isotope effects) between CO_3^{2-} and H_2O , and (c) the temperature sensitivity of $\alpha_{c/w}$ is caused by the negative effect of temperature on the $\text{CO}_3^{2-}\text{H}_2\text{O}$ fractionation factor and is expected to deviate from the commonly accepted -0.22 $\pm 0.02\%$ C value [3] where the CO₃²⁻ pool is not at isotopic equilibrium with water (e.g. coral aragonite). In contrast, kinetic isotope effects between CaCO₃ and CO₃²⁻ should have limited effects on the temperature sensitivity of $\alpha_{c/w}$. This explains why the ¹⁸O/¹⁶O of many biogenic carbonates (e.g. CaCO₃ secreted by foraminifers, molluscs, ostracods) display similar temperature sensitivities despite the carbonates forming in conditions far from isotopic equilibrium.

[1] Watkins et al. (2013) *EPSL* **375**, 349; [2] Devriendt et al. (in press) *GCA*; [3] Kim & O'Neil (1997) *GCA* **61**, 3461