Fe²⁺ and H₂S as electron donors during benthic N transformations in anoxic lake sediments

A. COJEAN¹, J. ZOPFI¹, E. ROBERTSON², B. THAMDRUP³, M. F. LEHMANN¹

Microorganisms help to mitigate N-loading in lakes by eliminating reactive N through anaerobic N₂ production via denitrification and/or anammox. In contrast, dissimilatory NO₃ reduction to ammonium (DNRA) retains bioavailable N within the system, promoting internal eutrophication. Fe2+ and H2S are thought to serve as potential alternative electron donors during benthic N cycling, but experimental evidence is still rare. Conducting incubation experiments with benthic microbial biomass and ¹⁵N label compounds (e.g. NO₃ and NO₂) we investigated the Fe²⁺ and H₂S control on denitrification and DNRA at two sites in Swiss Lake Lugano (Figino (Fe-rich) and Melide), where anammox contribution to N removal was generally <1%. We saw clear evidence for a substantial Fe control on the balance between denitrification and DNRA. In the NO₃ -amended treatments (and less so in the NO₂ treatments), we observed Fe-stimulation of DNRA at the cost of denitrification, suggesting coupling of DNRA to Fe oxidation mostly at the NO₃-reduction step. The Fe²⁺ control was differential at the two sites, suggesting significant intra-basin variability in the benthic microbial communities. Similarly, H₂S addition had different impact at the two sites. At Melide, in contast to Figino, additional H2S considerably enhanced both benthic denitrification and DNRA, locally significant contribution chemolithotrophic bacteria to total benthic nitrate reduction.

¹ Department of Environmental Science, University of Basel, CH-4056 Basel

² Department of Geology, Lund University, SE-223 62 Lund

³ Nordic Centre for Earth Evolution, SDU, DK-5230 Odense