Non-canonical N_2O production pathways under low oxygen

BRISTOW LA1,2,*, PADILLA, CC3, FRAME CH4, LEHMANN MF1, STEWART FJ3, THAMDRUP, B2

1Max Planck Institute for Marine Microbiology, Germany
2NordCEE, University of Southern Denmark, Denmark
3School of Biological Sciences, Georgia Institute of Technology, USA
4Dept. of Environmental Sciences, University of Basel, Switzerland

(*correspondence: lbristow@mpi-bremen.de)

Aquatic systems are a key source of the greenhouse gas nitrous oxide (N_2O), generating up to 35% of global N_2O emissions. Yet, little is known about the microorganisms and the partitioning of pathways that mediate N_2O production across oxygen and nutrient gradients. We dissected the contributions of denitrification and nitrification to N_2O production in the oxygen minimum zone of the Eastern Tropical North Pacific (ETNP) using both 15N-labeled substrates and $^{18}O_2$. Production of 15N$_2$O from 15NO$_3^-$ additions, but not from 15NH$_4^+$ additions, suggested denitrification as the source of N_2O within both the oxycline and the deep chlorophyll maximum.

However, the data suggested that microbes reduced the 15NO$_2^-$ via 15NO$_3^-$ to 15N$_2$O in an atypical “closed” pathway without freely exchangeable intermediates. Surprisingly, no variability in the N_2O production rate via this pathway was observed over a manipulated oxygen range of 0.1 to 15 µM. This stands in contrast to previous work that observed inhibition of N_2O production via canonical denitrification at nanomolar oxygen concentrations. Interestingly, experiments labelled with $^{18}O_2$ showed incorporation of ^{18}O into N_2O. Such incorporation would be expected in N_2O from hydroxylamine oxidation by ammonium oxidizers, but the lack of 15N incorporation from 15NH$_2^+$ in parallel incubations does not support this, which suggests that an alternate mode of N_2O production is at play. Multiple pathways of N_2O production were also indicated by metatranscriptomic data showing transcripts encoding proteins of both aerobic and anaerobic N_2O production. In summary, the apparent patterns observed in the ETNP did not match those predicted based on current hypotheses of how N_2O is produced in low-oxygen environments. Further elucidation of these non-canonical pathways and the organisms involved is important for understanding the factors controlling N_2O emissions from aquatic systems.