Non-canonical N₂O production pathways under low oxygen

BRISTOW $LA^{1,2,*}$. PADILLA, CC^3 , FRAME CH^4 , Lehmann MF^4 , Stewart FJ^3 , Thamdrup, B^2

¹ Max Planck Institute for Marine Microbiology, Germany

²NordCEE, University of Southern Denmark, Denmark ³School of Biological Sciences, Georgia Institute of

Technology, USA

⁴ Dept of Environmental Sciences, University of Basel, Switzerland

(*correspondence: lbristow@mpi-bremen.de)

Aquatic systems are a key source of the greenhouse gas nitrous oxide (N₂O), generating up to 35% of global N₂O emissions. Yet, little is known about the microorganisms and the partitioning of pathways that mediate N2O production across oxygen and nutrient gradients. We dissected the contributions of denitrification and nitrification to N2O production in the oxygen minimum zone of the Eastern Tropical North Pacific (ETNP) using both ¹⁵N-labeled substrates and ¹⁸O₂. Production of ¹⁵N₂O from ¹⁵N-nitrate $(^{15}NO_3)$ additions, but not from ^{15}N -ammonium $(^{15}NH_4)$ additions, suggested denitrification as the source of N2O within both the oxycline and the deep chlorophyll maximum. However, the data suggested that microbes reduced the ¹⁵NO₃ via ¹⁵NO₂⁻ to ¹⁵N₂O in an atypical "closed" pathway without freely exchangeable intermediates. Surprisingly, no variability in the N₂O production rate via this pathway was observed over a manipulated oxygen range of 0.1 to 15 μ M. This stands in contrast to previous work that observed inhibition of N₂O production via canonical denitrification at nanomolar oxygen concentrations. Interestingly, experiments labelled with ${}^{18}O_2$ showed incorporation of ${}^{18}O$ into N₂O. Such incorporation would be expected in N₂O from hydroxylamine oxidation by ammonium oxidizers, but the lack of ¹⁵N incorporation from ¹⁵NH₄⁺ in parallel incubations does not support this, which suggests that an alternate mode of N₂O production is at play. Multiple pathways of N₂O production were also indicated by metatranscriptomic data showing transcripts encoding proteins of both aerobic and anaerobic N₂O production. In summary, the apparent patterns observed in the ETNP did not match those predicted based on current hypotheses of how N2O is produced in low-oxygen environments. Further elucidation of these non-canonical pathways and the organisms involved is important for understanding the factors controlling N2O emissions from aquatic systems.