Association constants of Fe(III)-As(V) complexes in solution and solubility product of scorodite up to 90 °C

 $\begin{array}{l} XIANGYU \, ZHU^{1*}, D.K. \, NORDSTROM^2, R.B. \, McClesky^2, \\ Rucheng \, Wang^1, XIANCAI \, LU^1 \end{array}$

¹ State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China (*correspondence: xiangyuzhunju@gmail.com)

² US Geological Survey, 3215 Marine St., Suite E. 127, Boulder, CO 80303, USA

The solubility of Fe-As minerals has been intensively studied because of the environmental needs. But, the thermodynamic data for aqueous iron-arsenic species are inadequately characterized. The Gibbs free energy, enthalpy, entropy, and heat capacity and activity coefficients were refined in the Fe(II)-Fe(III)-As(V)-HClO4 and Fe(II)-Fe(III)-As(V)-HCl systems using redox potential measurements from 5 to 90 °C. The association constants for $\rm FeHAsO_{4^+}$ and $FeH_2AsO_4{}^{2+}$ at 25 $^\circ C$ are $10^{10.28}$ and $10^{4.02},$ and the corresponding association reaction enthalpies and heat capacities are 25.74 and 8.73 kJ mol-1 and 843.1 and -529.6 J K⁻¹ mol⁻¹, respectively. Individual ion activity coefficients for H⁺, ClO₄⁻, Fe²⁺, Fe³⁺, HAsO₄²⁻, and H₂AsO₄⁻ at 25 °C in the form of the Hückel equation were derived for ionic strengths up to 1 mol⁻¹ kg⁻¹. Newly derived activity coefficients and thermodynamic data were verified by calculating the Eh of laboratory solutions; the differences between calculated and measured Eh are all within 10 mV and relative differences are all lower than 1.5%. By incoporating the recently evaluated arsenic acid dissociation constants [1, 2] and solubility of scorodite (FeAsO4·2H₂O) in the congruent dissolution range together with our newly derived activity coefficients and thermodynamic data into PHREEQCI, the solubility product of scorodite was calculated as: log $K_{sp}= 226.9+10872/T+66.42 \times \log T$; (298.15 K $\leq T \leq 363.15$ K). This study established an internally consistent thermodynamic data set which can be used for geochemical modeling of water-mineral interactions, speciation, and toxicity studies in Fe-As system.

Acknowledgement: This work is financial supported by the National Research Program of the USGS and the 973 Program of China (No. 2014CB846004)

[1] Zhu et al. (2016) *Chem. Geol* **441**:171-190. [2] Nordstrom et al. (2014) *Rev. Mineral. Geochem* **79**:217-255.