The liquidus surface in the system CaCO₃–MgCO₃ at high pressure: revisiting conditions for the minimum

S. Zhao^{1,2,*} , S. Poli¹, E. Franzolin³ and M.W. Schmidt³

¹ Dipartimento di Scienze della Terra, Università degli Studi di Milano, 20133 Milano, Italy

² Institute of Geophysics and Geomatics, CUG, Wuhan 430074, China (*correspondence: sky zst@163.com)

³ Institute of Geochemistry and Petrology, ETH Zurich, Zurich 8092, Switzerland

Phase relationships along the join CaCO₃-MgCO₃ received considerable attention as a reference system for melting of a carbonated mantle, although data on the location of the liquidus surface are very limited.

Multianvil and piston cylinder experiments were performed on mixtures of reagent-grade CaCO₃ and pure natural magnesite as starting materials, from 1150 °C to 1700 °C, at 3.5 and 4.2 GPa. Two Pt capsules were simultaneously loaded in each run, in order to assess internal consistency of solid-liquid relationships. A Fe₂O₃ sleeve close to graphite furnace was used to trap hydrogen diffusion to the capsule expected by Soret effect.

At 4.2 GPa, 100% liquid was bracketed at 1250°C for compositions at $X_{Mg} = 0.3$ and 0.4 ($X_{Mg} = Mg/(Mg+Ca)$). Although hydrogen diffusion cannot be excluded, complete melting provides a strong constrain on the liquidus surface. At 1250 °C, magnesite + liquid, and Mg-calcite + liquid were recovered for bulk composition $X_{Mg} = 0.6$ and $X_{Mg} = 0.2$, respectively. Magnesite + liquid field were found to occur down to 1225 °C. The solvus magnesite + dolomite has been intersected at 1200 °C for a bulk $X_{Mg} = 0.6$. Subsolidus dolomite was found for bulk $X_{Mg} = 0.3$, whereas dolomite + liquid occurs at $X_{Mg} = 0.35$ in the same experiment, using paired Pt-capsules. At 3.5 Gpa, experiments suggest a larger temperature range for dolomite-liquid assemblage.

Byrnes and Wyllie [1] retrieved the minimum in the binary CaCO₃-MgCO₃ at 2.7 GPa, 1300 °C, and $X_{Mg} = 0.42$., and Buob et al. [2] at 6.0 GPa, 1370 °C, and $X_{Mg} = 0.5$. Because a positive dP/dT slope of the solidus is expected for most compositions in this binary, the new data we provide suggest an overestimation of melting temperatures in [1].

A preliminary thermodynamic model for the liquidus surface is explored here.

[1] Byrnes&Wyllie(1981) *GCA* **45**, 321-328. [2] Buob *et al.* (2006) *AM* **91**, 435-440.