Yttrium and Rare Earth Element partitioning in seawaters from the Bay of Bengal

Zhaojie Yu¹, Christophe Colin², Eric Douville², Laure Meynadier³, Stéphanie Duchamp-Alphonse¹, Sophie Sepulcre¹, Shiming Wan⁴, ⁵, Lina Song⁶, Qiong Wu⁷, Zhaokai Xu⁴, Frank Bassinot²

¹ Laboratoire GEOsciences Paris-Sud (GEOPS), UMR 8148, CNRS-Université de Paris-Sud, Université Paris-Saclay, Bâtiment 504, 91405 Orsay Cedex, France
² Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
³ Equipe de Géochimie et Cosmochimie, Institut de Physique du Globe de Paris-Sorbonne Paris Cité, UMR 7154, Université Paris Diderot, France
⁴ Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
⁵ Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
⁶ Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
⁷ State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

*Corresponding author: yuzhj1988@gmail.com, Tel: +33 659469974.

Abstract

The dissolved Yttrium (Y) and Rare Earth Element (REE) concentrations of seawater samples collected along a north-south hydrological transect within the Bay of Bengal (BoB) have been analyzed to estimate contributions of the Ganges and Brahmaputra (G-B) river inputs to the dissolved REE distribution of the Northern Indian Ocean. Surface water masses of the BoB are characterized by Y/Ho ratios (84) intermediate between the G-B river suspended sediment (41) and water mass from the South Indian Ocean (93). Co-variation of MREE (Middle REE, Sm) and LREE (Light REE, La) concentrations suggests that the dissolved REEs in surface waters (upper 100 m depth) of the BoB (Sm/La = 0.21) appear to derive mainly from the freshwater discharge of the G-B river system. In contrast, values obtained in the intermediate and deep-waters (Sm/La = 0.14) suggest a mixing of dissolved REEs deriving from the release of G-B river suspended particles (Sm/La = 0.16) and the contribution of Antarctic Bottom Water (AABW) (Sm/La = 0.12). Consequently, we propose that
MREE/MREE* ratios in the BoB waters could be an accurate proxy to trace lithogenic inputs from the G-B river system. The dissolved and particle re-mineralization Nd fluxes from G-B river system are calculated to constitute about 9% and 4% of the global dissolved river discharge and ‘Boundary inputs’ flux. Our estimation indicates that the massive G-B river system inputs could greatly alter the dissolved REEs distribution in the BoB and contribute to the dissolved REEs budget in the ocean.

Keywords: Bay of Bengal, seawater, Rare Earth Element concentrations, Ganges-Brahmaputra river system, residence times.