An extreme enrichment in atmospheric ¹⁵N¹⁵N: Biotic and abiotic contributions

LAURENCE Y. YEUNG,¹ SHUNING LI,² ISSAKU E. KOHL,² NATHANIEL E. OSTROM,³ JOSHUA A. HASLUN,³ TOBIAS P. FISCHER,⁴ EDWIN A. SCHAUBLE,² AND EDWARD D. YOUNG²

¹Department of Earth, Environmental and Planetary Science, Rice University, Houston, TX 77019 USA, lyeung@rice.edu

²Department of Earth, Planetary, and Space Sciences, University of California-Los Angeles, Los Angeles, CA 90095 USA

³Department of Integrative Biology, Michigan State University, East Lansing, MI 48824 USA

⁴Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131 USA

Molecular nitrogen (N₂) is a major component of many planetary atmospheres. On Earth, and probably also other planets, its first appearance and long-term evolution are associated with astrochemical and geologic processes [1]. However, Earth's N₂ budget today is dominated by biological cycles. The paucity of abiotic N₂ sources—and the abundance of abiotic sinks—has lead some to suggest that the persistence of N₂ in a mature planetary atmosphere could be a biosignature [2]. Inspired by this suggestion, we report the first study of $1^{4}N_{1}^{14}N_{1}^{15}N$, and $1^{5}N_{1}^{15}N$ (i.e., the "clumped" isotope distribution in N₂) in Earth's atmosphere.

Our clumped-isotope approach to a planetary N_2 budget removes one of the reservoir effects associated with N_2 biogeochemistry by tracking N-N bonds. Unlike for bulk nitrogen, N-N bonding is reset on timescales of global N_2 cycling. Moreover, bonding patterns are insensitive to the bulk ¹⁵N/¹⁴N ratio of a planet. This approach can be applied to determine mechanisms of N_2 cycling on a planetary scale.

We observe a 19‰ enrichment in atmospheric ¹⁵N¹⁵N relative to a random distribution of ¹⁵N and ¹⁴N isotopes within N₂ (i.e., $\Delta_{30} = 19\%$). This enrichment is in excess of that predicted for thermodynamic equilibrium anywhere on Earth. Clumped-isotope signatures from microbial and geologic N₂ sources are $\Delta_{30} \leq 1\%$. Electrolysis experiments simulating ion chemistry of the upper atmosphere cause large and variable ¹⁵N¹⁵N enrichments. Estimated timescales of upper-atmospheric N₂ cycling suggest atmospheric ¹⁵N¹⁵N excesses reflect a balance of biological and ionospheric N₂ cycling integrated over 10⁷-yr timescales.

[1] Füri, E. and B. Marty, Nat. Geosci. 8, 515 (2015).

[2] Capone, D. G. et al. *Science* **312**, 708 (2006).