Intercalation of CO₂ and H₂O in Nahectorite under geological carbon sequestration conditions using GCMD simulations

Ozgur Yazaydin^{*1,2}, Narasimhan Loganathan², Geoffrey M. Bowers³, Andrey G. Kalinichev⁴, R. James Kirkpatrick²

- ¹ Department of Chemical Engineering, University College London, London WC1E 7JE, UK (*correspondance: ozgur.yazaydin@ucl.ac.uk)
- ² Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA (naresh20@msu.edu, rjkirk@msu.edu)
- ³ Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, USA (gmbowers1@smcm.edu)
- ⁴ Laboratoire SUBATECH, Institut Mines-Télécom Atlantique, 44307 Nantes, France (kalinich@subatech.in2p3.fr)

We report computer simulations using grand canonical molecular dynamics (GCMD) to understand the intercalation of CO₂ and H₂O at different combinations of temperature and pressure relevant to petroleum reservoirs and geological carbon sequestration. The simulations are based on the smectite mineral hectorite with Na⁺ as the charge compensating cation. In the GCMD simulations the interlaver spacings were fixed at values from 9.5Å (dry state) to 18.0Å (3-layer hydrate) at intervals of 0.2Å. The interlayer mole fractions imposed by the chemical potential of the CO₂/H₂O bulk phase were quantitatively analyzed using equilibrium adsorption isotherms. The results agree well with experiments and confirm the notion that the presence of H₂O aids CO₂ intercalation, which is inhibited under dry conditions. Maximum CO₂ adsorption occurs at 12.2Å which is in the range of monolayer structures. The adsorbed CO₂ molecules exhibit parallel orientations with respect to basal hectorite surface and are coordinated to the basal surface. The interlayer species exhibit significant redistribution between different coordinations as the temperature and pressure changes. The orientation of the structural hydroxyl groups plays an important role in determining the interlayer CO₂/H₂O content. The variation in adsorption structure, nearest neighbour coordinations, residence time correlation functions, and diffusional mobility of H2O and CO2 as functions of interlayer spacing are consistent with available experimental and simulation data and provide a detailed structural and dynamical understanding of CO2 and H2O intercalation on a molecular scale.