Source and evolution path of oreforming fluids in Volcanogenic Massive Sulfide (VMS) system: New constraint from lithium isotopic investigation on the Gacun deposit, Sichuan

D. YANG^{1*}, Z.Q. HOU^{2,} Y. ZHAO¹, K.J. HOU¹, S.H. TIAN¹, O.FU²

¹ MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing, 100037, China(*correspondence:yangd 2013@163.com)

²Institute of of Geology, CAGS,Beijing 100037,China

Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ^7 Li results vary from +4.5% to +13.8% for fluid inclusions and from +6.7% to +21.0% for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperaturedependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., $\Delta \delta^7 Li_{quartz-fluid} = -8.9382 \times (1000/T) +$ $22.22(R^2 = 0.98; 175 \text{ C}-340 \text{ C}))$, which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using $\delta^7 Li_{quartz}$ data. Accordingly, we estimate that the oreforming fluids have a δ^7 Li range from -0.7% to +18.4% at temperatures of 175–340°C. This δ^7 Li range, together with Li-O modeling, suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process.