Mineral composition control on inter-mineral iron isotopic fractionation in granitoids

HONGJIE WU¹ YONGSHENG HE^{1*} LEIER BAO¹ CHUANWEI ZHU¹ SHUGUANG LI¹

¹ State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China

Previous studies suggested that increase of iron isotope fractionation between high-silica melts and crystallizing minerals is the key to understand the heavier Fe isotopic compositions of high-silica granitic rocks relative to that of dioritic-granodioritic ones. But it is unclear how the ß factors of minerals change with the composition variation of their coexisting melts. This study reports elemental and iron isotopic compositions of feldspar and its coexisting minerals from four Dabie I-type granitoids to evaluate the factors that control inter-mineral Fe isotopic fractionation in granitoids. The order of heavy iron isotope enrichment is feldspar > pyrite > magnetite > biotite \approx hornblende. Feldspar has heavier iron isotopic compositions than its co-existing magnetite (Δ^{56} Fe plagioclase-magnetite = +0.376‰ to +1.084‰, Δ^{56} Fe alkali-feldspar-magnetite = +0.516‰ to +0.846‰), which can be attributed to its high Fe^{3+}/Fe_{tot} ratio and low coordination number (tetrahedrally-coordinated) of $Fe^{3+}\!.$ $\Delta^{56}Fe_{magnetite-biotite}$ of coexisting magnetite and biotite ranges from 0.090‰ to 0.246‰. The large variations of intermineral fractionation among feldspar, magnetite and biotite depend on mineral compositions. strongly The Δ^{56} Feplagioclase-magnetite and Δ^{56} Fealkali-feldspar-magnetite are positively correlated with albite mode in plagioclase and orthoclase mode in alkali-feldspar, respectively. This could be explained by different Fe-O bond strength in feldspar due to different Fe³⁺/ Σ Fe or different crystal parameters. The Δ^{56} Fe_{magnetite}-biotite increases with decreasing Fe³⁺/ Σ Febiotite and increasing mole (Na+K)/Mgbiotite, indicating a decrease of β factor in low Fe³⁺/ Σ Fe and high (Na+K)/Mg biotite.

High-silica leucosomes from Dabie migmatites with a feldspar accumulation petrogenesis have higher δ^{56} Fe values (δ^{56} Fe = 0.424‰ to 0.567‰) than leucosome that represents pristine partial melt (δ^{56} Fe = 0.117 ± 0.016‰), indicating that accumulation of feldspar could account for high δ^{56} Fe values of these rocks. High δ^{56} Fe values are also predicted for other igneous rocks that are mainly composed of cumulate feldspar crystals, e.g., anorthosites. Feldspar accumulation, however, cannot explain high δ^{56} Fe values of most high-silica granitoids reported in the literature, based on their low Sr, Ba contents and negative Eu anomalies.