ADSORPTION OF METHANE AND CO2 IN GAS SHALES FROM EXPERIMENTS TO MOLECULAR SIMULATIONS

JENNIFER WILCOX¹²³

¹1613 ILLINOIS STREET, GOLDEN, COLORADO 80401 ²WILCOX@MINES.EDU

One method for mitigating the impacts of anthropogenic CO₂-related climate change is the sequestration of CO₂ in depleted gas and oil reservoirs, including shale. The accurate characterization of the heterogeneous material properties of shale, including pore volume, surface area, pore size distributions and composition is needed to understand the interaction of CO_2 with shale.

This study examines two Eagle Ford shale samples, both recovered from shale that was extracted at depths of approximately 3,800 meters and having low clay content (i.e., less than 5%), similar mineral composition, but with distinct total organic content, i.e., 2% and 5%. Experimentally-validated models of kerogen were used to estimate CH₄ and CO₂ adsorption capacities. Given the presence of water in these natural systems, the role of surface chemistry on modeled kerogen pore surfaces was investigated. Several functional groups associated with surface-dissociated water were considered. Pressure conditions from 10 bar up to 50 bar were investigated along with typical outgassing temperatures used in many shale characterization and adsorption studies, i.e., 60 °C and 250 °C. Both CO₂ and N₂ were used as probe gases to determine the total pore volume available for gas adsorption spanning pore diameters ranging from 0.3 nm up to 30 nm. The impacts of surface chemistry, outgassing temperature, and the inclusion of nanopores less than 1.5 nm were determined for applications of CH₄ and CO₂ storage from samples of the gasproducing region of the Eagle Ford shale.