Zn-Sr isotope evidence for sea-level falls and constraints on the Frasnian-Famennian mass extinction

Xun Wang¹, Sheng-Ao Liu^{1*}, Daizhao Chen², Liyu Zhang²

1 State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, Beijing 100083, China (*correspondence: lsa@cugb.edu.cn)

2 Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

The Frasnian-Famennian (F-F) biotic crisis, ~372 Ma ago, is one of the "Big Five" mass extinctions during the Phanerozoic and also referred to as the two-step "Kellwasser Event". This mass extinction event particularly caused longterm stepwise demise of shallow-water tropical species (e.g. corals, stromatoporoids, brachiopods and ammonoids). The trigger for the catastrophic event is debated and has been typically ascribed to sea level fluctuation, microbial bloom, volcanic/hydrothermal activities, marine anoxia, climate change and/or bolide impact.

Zinc is an essential micronutrient and Zn isotopic composition (δ^{66} Zn) of marine carbonate is markedly higher than those of volcanic rocks and deep seawater^[1]. Zn isotope variation of carbonates has been utilized to study environmental changes of the past oceans^[2]. Here we present for the first time δ^{66} Zn and and 87 Sr/ 86 Sr isotopic data obtained by sequential leaching procedure for carbonate rocks across the F-F boundary from the Fuhe section in South China. Both δ^{66} Zn and 87 Sr/ 86 Sr values increase in the Lower and Upper Kellwasser Horizons, and the two lowest values of δ^{66} Zn occur immediately before the Lower Kellwasser Horizon and after the Upper Kellwasser Horizon, respectively.

The coupling of elevated δ^{66} Zn and 87 Sr/ 86 Sr values suggests that the positive shift in seawater δ^{66} Zn most likely resulted from input of isotopically heavy Zn of the carbonate influx from carbonate platform weathering induced by relative sea-level falls. This interpretation is in accordance with the fact that the F-F mass extinction is almost limited to the shallow-water tropical species, and the deep water species are affected very little.

Pichat *et al.* (2003), *Earth Planet. Sci. Lett.* **210**, 167-178.
Liu *et al.* (2017), *Geology* **45**, 343-346.