Carbon isotope fractionation in phytoplankton as a potential proxy for pH rather than for [CO₂(aq)]: Observations from a carbonate lake

SHILU WANG^{1*}, KEVIN M. YEAGER², WEIQI LU¹

¹State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences. (*correspondence: wangshilu@vip.skleg.cn)
²Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY, USA

The method of reconstructing paleoatmospheric CO₂ levels using carbon isotope signatures of organic matter buried in sediments has been questioned due to the dubious foundation that carbon isotope phytoplankton fractionation during photosynthesis (ϵ_P) is controlled primarily by aquatic CO_2 concentration ([$CO_2(aq)$]). Consequently, what carbon isotope data from bulk sedimentary organic method. bulk sedimentary organic matter reflects is a puzzle. We determined the carbon isotope compositions of dissolved inorganic carbon (DIC) and particulate organic carbon (POC) in à lake located in a carbonate area [1]. The results of partial correlation analysis show that results of partial correlation analysis show that ϵ_P is more closely, and more steadily related with pH than with [CO₂(aq)], which is in accordance with recent advances in our understanding of the physiology of carbon utilization by phytoplankton for CO₂ and HCO₃⁻. Therefore, we propose that carbon isotope fractionation in phytoplankton is more suitable as a proxy of pH than of [CO₂(aq)]. One advantage of this amendment is that information on HCO₃⁻, the main species of carbon uptake by phytoplankton is likewise carbon uptake by phytoplankton, is likewise included.

[1] Wang et al. (2016) Limnol. Oceanogr. 61, 1259–1270.