Effect of ⁹⁹Tc(IV) coprecipitation with respect to Fe minerals on ⁹⁹Tc retention in glass

Wooyong Um^{1,2,*}, Guohui Wang¹, Dong-Sang Kim¹, and Michael J. Schweiger¹

¹Pacific Northwest National Laboratory, Richland, USA ²Pohang University of Science and Technology (POSTECH), Pohang, South Korea

Introduction

Vitrification of Hanford Site's radioactive tank waste into borosilicate glass has been considered as the baseline immobilization method because of the high stability of the final glass product. However, at the high temperatures (~1,000–1,200 °C) used in vitrification, a significant fraction of volatile radionuclide such as technetium (⁹⁹Tc) is expected to escape. Low retention of ⁹⁹Tc in a final glass is attributed to rapid volatilization of ⁹⁹Tc species during the high-temperature melt process. Iron minerals are stable hosts for Tc immobilization. ⁹⁹Tc(IV)-incorporation within Fe mineral structures such as spinel has also been proposed as a novel method to increase Tc retention even at the high temperatures used in vitrification.

Results

Reduced ⁹⁹Tc, ⁹⁹Tc(IV), substitutes for Fe(III) in the crystal structure by a process of ⁹⁹Tc reduction from ⁹⁹Tc(VII) to ⁹⁹Tc(IV) followed by co-precipitation of Fe oxide minerals. Two ⁹⁹Tc-incorporated Fe minerals (⁹⁹Tc-goethite and ⁹⁹Tc-magnetite/maghemite) were prepared and tested for ⁹⁹Tc retention in glass melt samples at temperatures between 600 – 1,000 °C. After being cooled, the solid glass specimens prepared at different temperatures were analyzed for ⁹⁹Tc oxidation state using ⁹⁹Tc K-edge XANES. In most samples, ⁹⁹Tc was partially oxidized from ⁹⁹Tc(IV) to ⁹⁹Tc(VII) as the melt temperature increased. However, ⁹⁹Tc retention in glass melt samples prepared using ⁹⁹Tc-incorporated Fe minerals were moderately higher than in glass prepared using KTcO4 because of limited and delayed ⁹⁹Tc volatilization.

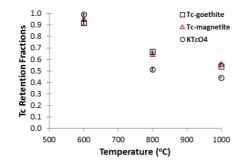


Fig.1. ⁹⁹Tc retention fractions in three different simulated glass melt samples prepared with ⁹⁹Tc-goethite, ⁹⁹Tc-magnetite, or KTcO₄ at three different temperatures (600 °C, 800 °C, and 1000 °C).