Early silicate differentiation of the Isua mantle? Insights from Tungsten isotopes and HSE abundances

J.Tusch1, J. van de Löcht1, P. Sprung1, J. E. Hoffmann2, C. Münker1

1 Department of Geoscience, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany (*correspondence: jonastusch@gmx.de)
2 Freie Universität Berlin, Berlin, Germany

Interpreting the origin of 182W anomalies in mafic Archean rocks and the role of a putative missing late veneer hinges on tightly constraining the Archean mantle abundances of highly siderophile elements (HSE). However, most HSE estimates for Archean mantle-derived rocks are based on their mafic derivatives, an approach with large uncertainties. Previous 182W isotope studies did either not include measurements of HSE or examined inadequate mafic-ultramafic lithologies, where the ultramafic rocks could not unambiguously be identified as mantle peridotites.

Here, we present the first high-precision W-isotope measurements for >3.8 Ga old peridotites from Isua that unambiguously show the geochemical characteristics of depleted mantle harzburgites or associated dunites. These mantle peridotites exhibit resolvable excesses in 182W of $+15$ ppm (± 2 ppm, 95% conf. limit). The observed absolute abundances and ratios of the PGE (Os, Ir, Ru, Pd, Pt), have previously shown to equal those of modern mantle peridotites, arguing against a missing late veneer component in these rocks. Our data are further corroborated by 182W- and 176Lu-176Hf isotope data for 3.72 Ga boninite-like metabasalts from the Isua supracrustal belt and 3.4 Ga Ameralik dikes. Both rock suites exhibit excesses in 182W up to $+20$ ppm. Positive initial ε_{Hf} values point to a derivation from a depleted mantle source. At a first glance, this would tentatively support models, where an early depletion of the Isua mantle might have caused the 182W anomalies. However, up to 100 fold enrichments of W in many samples relative to similarly incompatible elements like Th argue for selective W mobilization. Hence, inheritance of the anomalous W isotope signatures from metasomatic fluids or from subduction zone components in an arc setting can therefore not be ruled out.