TiO$_2$ nanomaterials detection in calcium rich matrices by spICPMS.

A matter of resolution and treatment.

MICKAEL THARAUD1,*, ANDREAS P. GONDIKAS2,3, MARC F. BENEDETTI1, FRANK VON DER KAMMER2, THILO HOFMANN2, GEERT CORNELIS4.

1 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, CNRS, F-75005 Paris, France (*correspondence: tharaud@ipgp.fr)
2 University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstr. 14, UZA II, 1090 Vienna, Austria.
3 Department of Marine Sciences, University of Gothenburg, Kristineberg 566, 45178 Fiskebäckskil, Sweden
4 Swedish University of Agricultural Sciences, Uppsala, Sweden

High Ca concentrations in complex matrices such as river waters often hamper detection of titanium nanomaterials (TiO$_2$ NPs) by single particle inductively coupled plasma mass spectrometry (spICPMS), because of isobaric interferences of 48Ca on the most abundant Ti isotope (48Ti). Several approaches were used to reduce this interference while measuring TiO$_2$ in solutions with different Ca concentrations up to 100 mg/L. ICP-MS/MS was used with ammonia as reaction cell gas and high resolution (HR) ICP-MS was used at different resolution settings. These approaches were compared with measuring different Ti isotopes (47Ti, 49Ti). spICPMS data was then treated with a deconvolution method to filter out dissolved signals and identify the best approach to detect the lowest possible corresponding spherical size of TiO$_2$ NP (D_{min}). ICP-MS/MS allowed for an important decrease of D_{min} compared to standard quadrupole ICP-MS, down to 64 nm in ultrapure water, however sensitivity was reduced by the reaction gas and increasing Ca concentrations also increased the D_{min}. The comparably higher sensitivity of HR-ICP-MS allowed for measuring D_{min} of 10 nm in ultrapure water. Combined with the deconvolution analysis, the highest resolution mode of the HR-ICP-MS leads to the lowest D_{min}, even though significant broadening of the measured TiO$_2$ mass distributions occurred at Ca concentrations up to 100 mg/L. Thereby, this work shows the feasibility of quantifying TiO$_2$ NPs and consequently Ti-colloids in presence of Ca.