TiO₂ nanomaterials detection in calcium rich matrices by spICPMS.

A matter of resolution and treatment.

MICKAEL THARAUD^{1*}, ANDREAS P. GONDIKAS^{2,3}, MARC F. BENEDETTI¹, FRANK VON DER KAMMER², THILO HOFMANN², GEERT CORNELIS⁴.

¹ Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, CNRS, F-75005 Paris, France (*correspondence: tharaud@ipgp.fr)

² University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstr. 14, UZA II, 1090 Vienna, Austria.

³ Department of Marine Sciences, University of Gothenburg, Kristineberg 566, 45178 Fiskebäckskil, Sweden

⁴ Swedish University of Agricultural Sciences, Uppsala, Sweden

High Ca concentrations in complex matrices such as river waters often hamper detection of titanium nanomaterials (TiO₂ NPs) by single particle inductively coupled plasma mass spectrometry (spICPMS), because of isobaric interferences of ⁴⁸Ca on the most abundant Ti isotope (⁴⁸Ti). Several approaches were used to reduce this interference while measuring TiO₂ in solutions with different Ca concentrations up to 100 mg/L. ICP-MS/MS was used with ammonia as reaction cell gas and high resolution (HR) ICP-MS was used at different resolution settings. These approaches were compared with measuring different Ti isotopes (⁴⁷Ti, ⁴⁹Ti). spICPMS data was then treated with a deconvolution method to filter out dissolved signals and identify the best approach to detect the lowest possible corresponding spherical size of TiO2 NP (D_{min}) . ICP-MS/MS allowed for an important decrease of D_{min} compared to standard quadrupole ICP-MS, down to 64 nm in ultrapure water, however sensitivity was reduced by the reaction gas and increasing Ca concentrations also increased the D_{min} . The comparably higher sensitivity of HR-ICP-MS allowed for measuring D_{min} of 10 nm in ultrapure water. Combined with the deconvolution analysis, the highest resolution mode of the HR-ICP-MS leads to the lowest D_{min} , even though significant broadening of the measured TiO₂ mass distributions occurred at Ca concentrations up to 100 mg/L. Thereby, this work shows the feasibility of quantifying TiO₂ NPs and consequently Ti-colloïds in presence of Ca.