The influence of particle concentration and

composition on the sorption and fractionation of

²¹⁰Po and ²¹⁰Pb along the North Atlantic

GEOTRACES transect GA03

YI TANG^{1,2}, GILLIAN STEWART^{2,1}

¹Department of Earth and Environmental Sciences, the Graduate Center, City University of New York, New York, NY 10016, USA. <u>Ytang2@gradcenter.cuny.edu</u>

²School of Earth and Environmental Sciences, Queens College, City Unviersity of New York, Flushing, NY 11367, USA. <u>Gillian.Stewart@qc.cuny.edu</u>

The particle concentration and composition effect on the adsorption behavior of ²¹⁰Po and ²¹⁰Pb were investigated by comparing dissolved (< 0.45 μ m) and particulate (small: 1-51 μ m; large: > 51 μ m) radionuclide activity with sizefractionated major particle composition from the GEOTRACES GA03 zonal transect cruises. We observed inverse relationships between partition coefficients (K_d) for the radionuclides and the concentration of suspended particulate matter, known as the "particle concentration effect". Details of this relationship indicated more colloidal ²¹⁰Pb in the open ocean and ²¹⁰Po in the coastal waters, respectively. Principal component analysis suggested that production and respiration/degradation were important for particle composition, and the activity of radionuclides in the small particles. Further, a six-end-member mixing model was developed to estimate K_d for ²¹⁰Po and ²¹⁰Pb from pure end members. The model predicted the observed $K_d(Pb)$ reasonably well, showing that CaCO₃ and MnO₂ are the major contributors to $K_d(Pb)$. The model, on the other hand, was unable to predict the observed $K_d(Po)$, suggesting possible still missing end members for scavenged ²¹⁰Po. There is nonetheless a significant trend showing a preference for scavenging ²¹⁰Po by organic carbon and a preference for scavenging ²¹⁰Pb by lithogenic/inorganic material.