²³⁴Th and ²¹⁰Po-²¹⁰Pb based Carbon export flux along the Indian GEOTRACES GI02 section in the Arabian Sea and the Indian Ocean

S. SUBHA ANAND¹, R. RENGARAJAN^{1*}

¹Geosciences Division, Physical Research Laboratory, Ahmedabad 380009 India.

(*correspondence: rajan@prl.res.in)

 ^{234}Th (t_{1/2} = 24.1 d), present in seawater, is a naturally occurring particle reactive radionuclide formed through the radioactive decay of its parent, ²³⁸U ($t_{1/2} = 4.47 \times 10^9$ y). The disequilibrium between ²³⁴Th and ²³⁸U is exploited to quantify fluxes of elements moving out of the euphotic zone by attaching on to sinking particles. As a part of the Indian GEOTRACES programme, high-resolution sampling was carried out at 11 stations in the Arabian Sea and the Indian Ocean during April - May 2014 from 17°N to 16°S along 65°E transect to estimate the particulate organic carbon export flux from the upper ocean. Average ²³⁴Th fluxes integrated up to 100 m were 2612 and 1968 dpm m⁻² d⁻¹ for the Arabian Sea and the Indian Ocean, respectively. These values are ~ 5 times higher than those observed on a similar transect along 87°E in the Bay of Bengal (594 dpm m⁻² d⁻¹) and the Indian Ocean (539 dpm m⁻² d⁻¹). For the same season, the Arabian Sea and the Bay of Bengal showed highly contrasting carbon export trends (mean: 4.0 and 0.8 mmol C m⁻² d⁻¹, respectively). Similar ²³⁴Th based carbon export fluxes were reported during March - April 1995 in the Arabian Sea [1].

As a dual tracer approach, carbon export was concurrently determined by using ²¹⁰Po/²¹⁰Pb disequilibrium along the above transect. ²²⁶Ra ($t_{1/2} = 1600$ y) in seawater decays to ²¹⁰Pb ($t_{1/2} = 22.3$ y) which further decays to ²¹⁰Po ($t_{1/2} = 138$ d). The ²¹⁰Pb adheres to particle surface while ²¹⁰Po is removed both by surface adsorption and biological uptake. ²¹⁰Po export fluxes integrated up to 100 m varied from 3.5 to 38.4 dpm m⁻² d⁻¹ with high export flux near the north and south of equator. The ²¹⁰Po deficit flux and the POC/²¹⁰Po ratio in sinking particulate matter are used to calculate the carbon export flux. High ²¹⁰Po based carbon export fluxes were found near equator, 14.0 mmol C m⁻² d⁻¹ and 11.3 mmol C m⁻² d⁻¹ at 5.5°S and 4°N, respectively. These trends are unique from that observed by ²³⁴Th technique indicating that there exists a strong seasonal variation in phytoplankton production and carbon export in the equatorial Indian Ocean.

[1] Buesseler et al. (1998) Deep-Sea Research Part II 45: 2461-2487.