Sulfide partial melting and chalcopyrite disease in sphalerite

BODDEPALLI GOVINDARAO*, KAMAL LOCHAN PRUSETH AND BISWAJIT MISHRA

Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur-721302, India
(*Correspondence: bgovind@gg.iitkgp.ernet.in)

Chalcopyrite disease in sphalerite is characterized by the presence of variable amounts of variably sized blebs of chalcopyrite in sphalerite. Diffusion controlled replacement of Fe-rich sphalerite is accepted to be the mechanism behind the production of such inclusions [1,2]. However, sphaleritechalcopyrite co-precipitation also has been proposed as a viable mechanism [3]. Chalcopyrite disease developed in sphalerite in an experimentally produced assemblage of sphalerite + galena + melt in the system $\mathrm{ZnS}-\mathrm{PbS}-\mathrm{FeS}^{-} \mathrm{Cu}_{2} \mathrm{~S}-$ $\mathrm{As}_{2} \mathrm{~S}_{3}$ at $600^{\circ} \mathrm{C}$ when annealed at $350{ }^{\circ} \mathrm{C}$. Diffusion of Cu into sphalerite occurred from the quenched melt, which contained 21.89 atom $\% \mathrm{Cu}, 14.59$ atom $\% \mathrm{~Pb}, 11.77$ atom $\%$ As, 3.69 atom $\% \mathrm{Fe}, 0.48$ atom $\% \mathrm{Zn}$ and 47.58 atom $\% \mathrm{~S}$. Chalcopyrite disease seems to develop in the Fe-rich part as a whole within zoned sphalerites rather than the compositionally steep interfaces where lattice strains may be focussed and favor diffusion [1]. We observe higher $\mathrm{S} /(\mathrm{Zn}+\mathrm{Fe})$ in spahalerites in our experiments and similar nonstoichiometry has been also reported in natural sulfide samples that has undergone partial melting during prograde metamorphism [4]. We propose that this non-stoichiometry in S is the main driving force for the diffusion of Cu and the formation of chalcopyrite disease in sphalerite. It may be favored by sulfide partial melting as low-T sulfide partial melts are invariably enriched in Cu and are S-deficient in nature $[4,5]$.
[1] Barton \& Bethke (1987) Am. Mineral. 72, 451-467,
[2] Bente \& Doering (1993) Eur. J. Mineral. 5, 465-478,
[3] Kojima (1990) Min. Geol. 40, 147-158,
[4] Pruseth et al. (2014) Ore Geol. Rev. 60, 50-59,
[5] Pruseth et al. (2016) Ore Geol. Rev. 72, 1213-1223.

