Cr³⁺ behavior at the content < 100 > 0 ppmw within α-Al₂O₃: case study of Ilmen blue sapphires by RS PL and LA-ICP-MS mappings

ELENA S. SOROKINA, ¹, ZIYIN SUN², LORNE C. LOUDIN², TURSUN P. NISHANBAEV³, SERGEY N. NIKANDROV³

¹ Vernadsky Institute of Geochemistry and Analytical chemistry RAS (GEOKHI), Moscow, Russia (<u>elensorokina@mail.ru</u>); ² GIA, Carlsbad and New York, USA; ³ Ilmen State Reserve, Miass, Russia

The luminescence features of α -Al₂O₃:Cr³⁺ (a mineral corundum) have been studied since the time of first ruby solid-state lasers development. In the α -Al₂O₃:Cr³⁺ spectra induced by the Raman laser-emission (RS PL) at the Cr content > 100 - 300 ppmw, when the N-lines (~701 and ~705 nm) appear, their intensities ratio toward those of sidebands of Cr³⁺ (~710 and 714 nm) was applied for Cr³⁺ quantitative calculations in the corundum lattice [1], [3]. Meanwhile the use of R-lines intensities (~692 and 694 nm) for this estimation was eliminated due to their quenching in the presence of Fe. In Ilmen sapphires, Cr³⁺ RS PL maps of R-line peak area demonstrated oscillatory behaviour with at least 2 well-defined zones. Laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) element mapping of Fe, V and Ga showed the minor degree of element heterogeneity within the α -Al₂O₃; Cr chemical map was found to be consistent with the oscillatory zonation of Cr³⁺ RS PL map in R-line peak area.

Thus, undertaken research showed: 1) Cr^{3+} RS PL mapping of R-line peak area may be used for estimation of Cr^{3+} content <100ppmw in α -Al₂O₃; 2. The source of Cr in Ilmen sapphires may not be linked to the marine sediments since no evidence of correlation observed among Cr, Fe, V, and Ga on LA-ICP-MS maps.

[1] Häger, T. & Dung, P.T., 2000. *EJM*, **12**, 1:71; [2] Nasdala, L. et al., 2004. *EMU notes in Mineral.*, **6**, 43–91; [3] Sorokina, E.S. et al., 2016. *Am. Mineral.*, **101**, 2716 – 2722;