Multistage melting in the lower crust: an example from the Proterozoic Eastern Ghats Belt, India

N.SORCAR^{1*}, S. BOSE² AND K.DAS³

 ¹ National Centre for Earth Science Studies, Akkulam, Thiruvananthapuram – 695011, India
(* correspondence: nilanjanasorcar@yahoo.co.in)
² Department of Geology, Presidency University, Kolkata 700 073, India (sankar.bose@gmail.com)
³ Department of Earth and Planetary Systems Science, Hiroshima University, Japan 739 8526 (kaushik@hiroshima-u.ac.jp)

Rocks of the Eastern Ghats Belt (EGB) experienced ultra high temperature (UHT) metamorphism and post-UHT thermal relaxation. Textural, phase equilibria and in-situ geochronological data from this belt show episodic melting history of the lower crust.

We characterize two-stage melting processes in lower crust. While the leucosomes layers of migmatitic aluminous granulite preserves the textural evidences for an early melting event (M_{1L}) , the fine symplectic intergrowth involving cordierite, K-feldspar, quartz, plagioclase with minor orthopyroxene, biotite and sillimanite in the same leucosome layers bears the imprint of a later melting event (M_{2I}). M_{1L} melt was produced by incongruent melting of Ti-F biotite and was mostly lost from the lower crust to preserve the UHT assemblage. An early UHT metamorphism (1011±10 Ma) was associated with this melting which was followed by isobaric cooling. The traces of biotite that formed during the cooling stage as a consequence of H₂O-F fluid intake during back reaction of M1L melt caused renewed fertility of the crust. The granulite-grade reworking at 953±6 Ma caused M₂₁ melting and the melt crystallized at 939±6 Ma. Although the melting was initiated as a H₂O-understaurated process, it shifted to CO2-H2O present one during the exhumation at shallower level. This study explains how an infertile cooled crust rehydrates and undergoes melting with production of complex texture.