Diversity of phosphatases in the biomineralizing bacterium
Ramlibacter tataouinensis: an in vitro and in silico study

SKOURI-PANET F1*, BENZERARA K1, COSMIDIS J2, FERARD C1, CAUMES G1, DE LUCA G1, HEULIN T3, DUPRAT E1*

1IMPMC, UPMC-Sorbonne Universités/CNRS/MNHN/IRD, Paris, France
(*correspondence: feriel.skouri@impmc.upmc.fr, elodie.duprat@impmc.upmc.fr)
2Department of Geological Sciences, University of Colorado, Boulder CO, USA
3Aix-Marseille Université, CEA/CNRS, Saint-Paul-lez-Durance, France

The enzymatic activity of microbial phosphatases can trigger the precipitation of metal-phosphate minerals, with global geochemical and environmental implications. An increasing diversity of phosphatases expressed by diverse microorganisms has been evidenced in various environments. However, it is challenging to link this diversity of enzymes, microorganisms with phosphatogenesis capabilities and potential signatures in the produced mineral phases.

Here, we study the phosphatases of a model bacterium, Ramlibacter tataouinensis (Rta), known to biomineralize Ca-phosphates in the environment and the laboratory. Based on a mineralization assay, we evidence that Rta hydrolyses the phosphoester bonds of a wide range of organic P molecules. Accordingly, Rta genome has an unexpected diversity of phosphatases: five genes belonging to two non-homologous families (PhoD and PhoX), with diverse genomic organization, regulatory elements and protein structural specificities. Heterologous expression in E. coli confirms that these proteins have different profiles of substrate hydrolysis.

The high diversity of phosphatases in Rta may favor phosphatogenesis in a range of environments broader than for other species. Moreover, our combined in silico and in vitro approaches provide a reference framework opening new perspectives for deciphering the enzymatic potential of an ecosystem to induce the precipitation of metal-phosphate minerals.