Submarine groundwater discharge: a hidden pathway of Fukushima derived cesium to the ocean off Japan

Virginie Sanial^{1*}, Ken Buesseler¹, Matt Charette¹, Seiya Nagao², Makoto Taniguchi³, Hisami Honda³, Nuria Casacuberta⁴

¹Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole MA, USA (*correspondence: <u>vsanial@whoi.edu</u>)

 ²Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Japan
³Research Institute For Humanity and Nature, Kyoto Japan
⁴Laboratory of Ion Beam Physics, ETH Zurich, Switzerland

The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) experienced multiple reactor meltdowns in March 2011 followed by the releases of radionuclides to the marine environment, in particular of cesium-137 (¹³⁷Cs).

The highest 137 Cs activities measured outside the FDNPP site (as high as $23,000 \pm 460$ Bq m⁻³) over the past five years were not found in the ocean, rivers or potable groundwater, but in saline groundwater beneath sand beaches over tens of kilometers away from the FDNPP. Cs levels in the beach surf zones were in excess of offshore seawater Cs and displayed a tidal variability, which is one line of evidence that beach groundwater is a source of Cs to the ocean. High Cs level were also measured in beach sand cores. The Cs inventory in beach sand $(4.8 \pm 0.6 \times 10^5 \text{ Bq m}^2)$ was one order of magnitude higher than the largest inventory recorded in marine sediments, and within a factor of four of terrestrial soil cores inventories, indicative of a large reservoir of Cs contaminated solids.

Following a serie of adsorption/desorption experiments, we hypothesized that highly radioactive seawater intrusion in 2011 driven partly by waves and tides, led to the storage of Cs by adsorption onto beach sands. Similar fluid exchange and subsequent desorption of Cs from sand remobilizes slowly Cs into groundwater, and ultimately, into the ocean.

Parallel measurements of radium isotopes were conducted to provide regional estimates of the release of Cs via submarine groundwater discharge along the coast of Japan. This ocean source (0.6 TBq y^{-1}) is of similar magnitude of the ongoing releases of Cs from the FDNPP site, as well as the riverine input of dissolved Cs. This process may also impact other radionuclides as evidenced by elevated iodine-129 that were found in this beach groundwater.