Constraining diet and migration in Early Medieval Ireland using an integrated multi-isotope (87 Sr/ 86 Sr, δ^{18} O, δ^{2} H, δ^{13} C, δ^{15} N) approach

SASKIA E. RYAN $^{1*}\cdot$ Linda M. Reynard², Quentin G. Crowley¹ and Noreen Tuross²

¹ Department of Geology, School of Natural Sciences, Trinity College, Dublin 2, Ireland (*correspondence: ryans22@tcd.ie)

² Department of Human Evolutionary Biology, 11 Divinity Avenue, Harvard University, Cambridge, Massachusetts 02130, USA

Multiple isotopes (⁸⁷Sr/⁸⁶Sr, δ^{18} O, δ^{2} H, δ^{13} C, δ^{15} N) have been employed to constrain diet and provenance of Early Medieval populations in Ireland. Existing ⁸⁷Sr/⁸⁶Sr data from geochemical mapping of contemporary soils, plants and streamwater, in combination with δ^{18} O values, have been used to assess potential archaeological human migration. δ^{18} O values of bone collagen are notably invariable for three local scale archaeological sites (10.0‰ ± 0.6 (n=36)).

Due to the formation of HCN during the measurement of certain organic compounds by High-Temperature Conversion (HTC) with a glassy carbon reactor, δ^2 H values can be artificially skewed relative to those analysed using a Cr-packed reactor [1]. Here, we present the first comparative results using these two methods for human samples. Preliminary results show that 'glassy carbon' δ^2 H values are offset by a mean of -12.2‰ ± 4.5 (n=36) compared to those obtained using a Cr-packed reactor.

High $\delta^{15}N$ values for both animal (9.8 ‰ ± 1.7) and adult human (12.0 ‰ ± 0.8) bone collagen suggests an ^{15}N enrichment in the biome, potentially reflecting the effects of manuring in this environment. A mean $\delta^{13}C$ of -21.0 ‰ ± 0.41 for adult humans suggests a largely terrestrial source of dietary protein relative to marine input.

[1] Reynard & Tuross (2016), Rapid Commun. Mass Spectrom. 30, 1857-1864