Radium in the Arctic Ocean - the 2015 GEOTRACES missions

MICHIEL RUTGERS VAN DER LOEFF¹, LAUREN KIPP², DOROTHEA BAUCH³, ALEXANDER N. CHARKIN⁴

- ¹Alfred-Wegener Institut, Helmholtz Center for Polar and Marine Research, Bremerhaven Germany, mloeff@awi.de
- ²Woods Hole Oceanographic Institution, Woods Hole, USA, lkipp@whoi.edu
- ³GEOMAR Helmholtz Center for Ocean Research, Kiel Germany, dbauch@geomar.de
- ⁴Pacific Oceanological Institute (POI), Far Eastern Branch of Russian Academy of Sciences (FEBRAS), Vladivostok, Russia, charkin@poi.dvo.ru

The Arctic Ocean is a small ocean basin surrounded by wide and shallow shelves receiving large river inputs. The radium quartet are four tracers of contact with sediments that give information on transport processes ranging in time scale from days to hundreds of years.

²²⁸Ra (5.8 y halflife) is a good tracer for surface water circulation. New 2015 GEOTRACES (sections GN01+GN04) ²²⁸Ra data show the first full Barents Sea to Bering Strait transect with maximum activities in the Transpolar Drift. We compare the 2015 section in the central Arctic with earlier Polarstern sections in 1987/1991, 2007 and 2011 and discuss reasons for increases in maximum ²²⁸Ra activities (Kipp et al., 2017).

The penetration of 228 Ra and its daughter 228 Th to waters of intermediate depths (up to about 1500m) shows the exchange of these waters with shelf and slope sediments on the time scale of 228 Ra decay.

Input from the seafloor causes an enrichment of 228 Ra and 226 Ra in bottom waters. In deep waters (>2000m) of the Eurasian and Makarov basins 226 Ra (1600 y halflife) accumulates to values around 16 dpm/100L or about twice the surface water concentration.

It has been argued that export production increases with decreasing ice cover in the Arctic (Arrigo et al., 2008). Natural radionuclides can help to quantify export production rates, but the fluxes found may depend on the time scale of the tracer used. The most commonly used tracer 234 Th/ 238 U (24 d halflife) has a memory much shorter than a season. The 210 Po/ 210 Pb (138 d; Roca-Martí et al., 2016) and 228 Th/ 228 Ra ratios (1.9 y) are alternatives on a full seasonal time scale.

Arrigo, K.R. et al., 2008. *Geophys. Res. Lett.* **35**, L19603 Kipp, L. et al., 2017. *ASLO 2017 OSM abstracts* Roca-Martí, M. et al., 2016. *Journal of Geophysical Research: Oceans* **121**, 5030-5049