Intercomparison of δ^{26} Mg values in Mg isotope RMs and standards to a new isotope RM traceable to the SI

M. ROSNER^{1*}, J. VOGL², A. MEIXNER³, S. M. KASEMANN, O. RIENITZ⁴, J. NOORDMANN⁴, J. A. SCHUESSLER⁵, R. VOCKE⁶, S. RABB⁶, R. KRAFT⁶

¹ IsoAnalysis UG, 12489 Berlin, Germany

(*martin.rosner@isoanalysis.de)

² BAM, 12489 Berlin, Germany

³ University Bremen, 28359 Bremen, Germany

⁴ PTB, 38116 Braunschweig, Germany

⁵ GFZ Potsdam, 14473 Potsdam, Germany

⁶ NIST, Gaithersburg, MD 20899, USA

Accurate measurements of stable isotope abundance ratio variations are often reported using artifact based δ -scales, which rely on suitable isotopic reference materials (iRM) for their realization. For example, variations in the ²⁶Mg/²⁴Mg isotope abundance ratio in natural systems are typically reported as δ^{26} Mg values that represent the relative difference between the ²⁶Mg/²⁴Mg ratio measured in a sample relative to its measurement preferably in an iRM. In the past, such δ^{26} Mg measurements were referenced to NIST SRM 980, the initial zero of the δ^{26} Mg scale. With the development of MC-ICPMS, the detection of small but measurable isotopic differences in different chips of SRM 980 became apparent. It was then replaced by an Mg solution (DSM3), the new zero of the δ^{26} Mg scale. A potential replacement iRM for DSM3 has been developed, ERM-AE143. This iRM has also been measured for its absolute isotope amount ratios^{1,2} making it traceable to the SL

The results of our δ^{26} Mg intercomparison experiment include the Mg iRMs SRM 980, IRMM-009, ERM-AE143, AE144, AE145 standards DSM3 and Cambridge-1. The intercomparison involved 5 expert laboratories, consisting of 3 metrological institutes (BAM, NIST, PTB) and 2 scientific research laboratories (GFZ Potsdam, UBremen).

The iRMs were measured relative to AE143 and cover a range of $\approx 5 \%$ in δ^{26} Mg. IRMM-009 has the lowest δ^{26} Mg value while DSM3 has the highest, spanning a range in values that covers natural Mg isotope variations. The 2SD reproducibilities of the individual values from the different laboratories range from 0.02 to 0.26 ‰. The mean δ^{26} Mg values, calculated from the laboratory means however show 2SD reproducibilities varing between 0.03 and 0.10 ‰. Propagated measurement uncertainties suggest a standard uncertainty of about 0.1‰ for δ^{26} Mg determinations.

¹JAAS, 2015, 31,179; ²JAAS, 2016, 31, 1440

This abstract is too long to be accepted for publication. Please revise it so that it fits into the column on one page.